Journal für praktische Chemie Chemiker-Zeitung © Johann Ambrosius Barth 1992

Zur Regio- und Stereoselektivität nucleophiler Thioladditionen an Polyine

A. Zschunke und C. Mügge

Berlin, Fachbereich Chemie der Humboldt-Universität

E. Hintzsche und W. Schroth

Halle-Wittenberg, Institut für Organische Chemie der Martin-Luther-Universität

Bei der Redaktion eingegangen am 26. Juni 1991.

Herrn Prof. Dr. Rolf Borsdorf zum 60. Geburtstag gewidmet

On the Regio- and Stereoselectivity of Nucleophilic Thiol Additions to Polyines

Abstract. Nucleophilic thiophenol additions to α, ω diphenyl polyines Ph-(C=C)_n-Ph (n=2-4) (1-3) take a regio- and stereoselective course. The welldefined, crystalline addition products bind the phenylthio group in terminal position of the aliphatic chain, the resulting C,C-double bonds of the mono-(4, 6, 8) and bis-addition products (5, 7, 9) are (Z)configurated, as unequivocally proved by 13 C-n.m.r. analysis.

Einleitung

Nucleophile Additionen an konjugierte Polyine wurden zwar schon vielfältig untersucht [1], verschiedentlich jedoch sind regio- und stereochemische Fragen offen geblieben. Soweit überwiegend bekannt, wird ein Angriff an den terminalen Positionen bevorzugt; auf Grund eines "trans-ionischen" Mechanismus sollte eine (bezüglich des eingeführten Nucleophils) cis-konfigurierte C,C-Doppelbindung resultieren. Ausnahmen können insbesondere unter dem Einfluß von heterofunktionellen Substituenten, so bei Zweitadditionen in Abhängigkeit vom primär terminal eingeführten Substituenten erwachsen; beispielsweise addieren Thiole an Butadiine in 1- und 4-Position [2], während (primäre) Amine eine 1,3-Orientierung der Bis-addition bevorzugen [3].

Dieses Prinzip bewährte sich ebenso bei unserer schon früher beschriebenen Synthese von 1,2-Dithiinen [2c,4], die über die nucleophile Addition von Benzylmercaptan an Butadiine zu (Z,Z)-1,4-Benzylthio-but-1,3-dienen, deren reduktive Spaltung zu (Z)-Buta-1,3-dien-1,4-dithiolaten und nachfolgende Disulfid-Oxidation verläuft. Im Gegensatz dazu steht offenkundig die Biogenese natürlicher (zumal in den Wurzeln von Korbblütlern vorkommender) 3,6-diinylsubstituierter 1,2-Dithiine ("Thiarubrines") [5]. Hierbei ist anzunehmen, daß primär eine 1,4-Dithiol-Addition im zentralen Bereich einer Polyinkette erfolgt. Aus dieser Sicht erschien es uns von besonderem Interesse, die Regio- und Stereochemie der nucleophilen "in vitro"-Addition von Thiolen an konjugierten Polyinen einer eingehenden Prüfung anhand geeigneter Modellverbindungen zu unterziehen.

Präparative Ergebnisse

Bei den meisten der bislang untersuchten nucleophilen Additionen an *aliphatische* Polyine wurde in Mikroansätzen gearbeitet, die günstigenfalls eine spektroskopische Charakterisierung der (zumal öligen und instabilen) Produkte garantierten. Um grundsätzlich kristallin-definierte Produkte zu fassen, entschieden wir uns für die Verwendung der α, ω -Diphenylpolyine 1-3 und von Thiophenol als nucleophilem Reaktionspartner. Die Phenylsubstituenten boten zugleich den Vorteil, als Sonden bei der NMR-spektroskopischen Analyse (vgl. NMR-Teil) verwendbar zu sein.

$$C_{6}H_{5}-(C \equiv C)_{n}-C_{6}H_{5} \qquad n$$

$$A \qquad 1$$

$$1 \qquad 2$$

$$2 \qquad 3$$

Für die Herstellung der 1-3 dienten herkömmliche Vorschriften (vgl. Ref. [1c]). Die in Lit. [6] praktizierte Cadiot-Chodkiewicz-Kupplung von zwei Molekülen Brom-phenyl-acetylen mit Butadiin ließ sich für die Synthese von 3 indes nur unergiebig reproduzieren, so daß wir den Zugang über eine Glaser-Kupplung von Phenylbutadiin wählten. Letzteres wurde in Anlehnung an [7] aus Benzoylaceton via 1,1,3,3-Tetrachlor-1-phenyl-butan (ohne Isolierung der Zwischenstufen) gewonnen, wobei allerdings verschiedene Modifizierungen notwendig wurden (s. Versuchsbeschreibung).

Zur nucleophilen Thiophenol-Addition an die Verbindungen 1-3 erwies sich die Umsetzung in einer ethanolischen Natriumethanolat-Lösung als optimal. Je nach Mengenverhältnis der Edukte konnten die Mono-addukte 4, 6 und 8 oder die Bis-addukte 5, 7 und 9 als Hauptprodukte in präparativ brauchbaren Ausbeuten kristallin isoliert werden (s. Schema 1). Unter den angegebenen Reaktionsbedingungen war eine Thiophenol-Addition an Tolan (A) nicht zu erreichen (Ethinyl-Aktivierung in 1-3).

Wie wir fanden, lassen sich bei der nucleophilen Addition von Thiophenol wie auch von Benzylmercaptan an 1-3 unter Phasentransfer-Katalyse ca. 10 % höhere Ausbeuten erzielen (Zweiphasensysteme flüssig/ flüssig: Benzol/Wasser/KOH und flüssig/fest: Benzol/KOH, jeweils mit 18-Krone-6) [8].

Eine eindeutige konstitutionelle und stereochemische Zuordnung der Mono- und Bis-additionsprodukte ließ sich NMR-spektroskopisch erbringen.

Stereochemische Interpretation der ¹³C-NMR-Spektren

Die ¹³C-Spektren der Verbindungen A, 1-9 wurden durch Vergleich mit ähnlichen Verbindungen [9-12]unter Nutzung eines Inkrementsystems [13] und durch Messung der ¹³C-¹H-Kopplungskonstanten [14-16] zugeordnet.

Die Thiophenylgruppe nimmt die Position 1 in den Verbindungen 4-9 und in den Verbindungen 5, 7, 9 zusätzlich die Position 8 ein. Andere Produkte wurden nicht gefunden. Die Konstitutionsformeln (Schema 2) ergeben sich aus der Aufspaltung der ¹³C-Signale von C-1 und C-2 durch die Protonenkopplung. C-1 ist ein Triplett $(/^{3}J/=1-7, 1 \text{ Hz}, \text{ siehe Tabelle 2})$ aufgrund der Kopplung zu den ortho-Protonen der Phenylgruppe A. Das ¹³C-Signal von C-2 ergibt ein Dublett

Schema 1 Nucleophile Addition von Thiophenol an α, ω -Diphenyl-polyine

Verb.										
Position	Α	1	2	3	4	6	8	5	7	9
1	89,3	81,6	78,6	77,7	147,2	151,7	154,2	139,6	147,5	151,5
2	89,3	74,0	74,4	74,4	112,5	110,3	108,3	133,4	112,3	110,3
3		74,0	66,5	67,2	87,9	79,5	76,4		96,4	82,5
4		81,6	66,5	63,6	98,6	82,3	82,6		96,4	82,4
5			74,4	63,6	,	74,4	66,6			82,4
6			78,6	67,2		84,6	69,9			82,5
7			,	74,4		,	74,6	133,4	112,3	110,3
8				77.7			80,1	139,6	147,5	151,5
i				,	138,3	137,5	137,4	138,1	138,2	137,6
0					128.0	127.9	127.9	127.9	127,9	127,9
m					128.4*	128.3	128.3	128.3	128.2	128.2
p					128.5*	129.2	129.7	128.3	128.6	129.0
i'					134.6	133.7	133.3	135.6	134.4	133.7
0'					130.4	130.8	131.1	128.7	130.5	130.8
m'					128.8	128.7	128.7	128.8	128.6	128,6
p'					126.5	126.8	127.0	125.8	126.4	126.7
;''	123.1	121.8	120.9	120.5	123.4	121.8	120.9	,_	, .	,
o"	131.5	132.5	132.9	133.2	131.7	132.7	132.9			
	128.2	128.4	128 5	128.5	128.5*	128.4	128.5			
р"	128,1	129,2	129,7	130,0	128,6*	129,1	129,3			

Tabelle 1 ¹³C-NMR chemische Verschiebungen der Verbindungen A, 1–9

* austauschbare Paare

 $(/^{1}J/=156,5-166,7$ Hz, siehe Tabelle 2). Diese Werte und das Fehlen einer Aufspaltung des C-3-Signals $(^{2}J(C-3/H-2)=0$ Hz) sind in Übereinstimmung mit einer C-C-Dreifachbindung zum folgenden C-4-Atom [14-16]. Die Bestimmung der relativen Konfiguration an der C = C-Doppelbindung basiert auf der Kopplung zwischen dem ipso-¹³C-Signal der Phenylgruppe A und dem Proton H-2. Die selektive Entkopplung der aromatischen Protonen bei $\delta = 7, 1 - 7, 4$ in der Verbin-

Schema 2 Indizierung der Verbindungen A und 1-9 gemäß Tabelle 1

Verb.										
J	Α	1	2	3	4	6	8	5	7	9
¹ J (2)					164,3	165,9	166,7	156,5	164,5	166,0
¹ J (0)					159,9	160,7	162,1	159,3	159,6	159,4
¹ J (m)					*	160,7	163,1	160,1	*	160,5
¹ J (p)					*	161,6	162,0	*	*	161,4
¹ J(o')					162,7	161,6	162,1	160,9	162,1	162,4
'J (m')					161,0	160,7	162,4	160,0	161,3	161,9
¹ J(p')					160,1	161,3	161,4			161,1
¹ J (o'')	167,7	163,7	163,3	163,4	163,4	163,2	163,2			
¹ J (m'')	162,3	161,1	162,3	162,6	*	163,0	163,6			
¹ J (p'')	161,1	162,2	161,9	162,1	*	161,2	161,3			
J (i)					18,6	18,6	18,6	17,8	17,8	17,8
³ J (H2-i)							4,3			
³ J (H2-4)					5,3	4,7	4,9		4,0	1,6
⁴ J (H2-5)						3,1	3,3			
⁵ J (H2-6)						0,9	1,9			
⁶ J (H2-7)							1,2		1,6	
³ J (o''H-4)							5,4			
³ J (o''H-6)						5,0				
³ J (o''H-8)	5,1		5,2	5,4	4,5					
³ J (i')					8,4	8,9	8,0	8,2	8,3	8,2
³ J (o')					6,7	6,1	6,8		6,3	6,2
³ J (m')					7,0	7,1	8,3		7,5	7,1
³ J (p')					7,9	7,5	7,3	6,9	7,1	7,1
³ J (l)	5,1		5,2	5,4	4,3	4,4	4,6	7,1	2,0	4,3

Tabelle 2 ¹³C-¹H-Kopplungskonstanten (Absolutwerte in Hz) der Verbindungen A, 1–9

* überlagerte Signale

dung **8** führt zu einem Dublett für das C-i-Signal mit einer reduzierten Kopplungskonstanten von 2 Hz. Die Reduzierung ist auf eine Störung der olefinischen H-2-Niveaus ($\delta = 6,08$) durch eine nicht ausreichende Selektivität der Protonenentkopplung zurückzuführen. Aus den Veränderungen der Kopplungskonstanten ³J(4), ⁴J(5) und ⁵J(6) für Verbindung **8** ergibt sich näherungsweise ein Reduzierungsfaktor von 0,43 – 0,03. Die resultierende Kopplungskonstante ³J(C-i-H-2) = 4,3 Hz spricht für eine Z-Konfiguration [12]. Eine selektive Entkopplung der olefinischen Protonen bei $\delta = 6,08$ zeigt eine Aufspaltung höherer Ordnung des C-i-Signals durch die aromatischen Protonen.

Das ¹³C-Signal des ipso-C der Phenylgruppe A hat in den Verbindungen 4-9 eine Breite von 17,8 – 18,6 Hz. Es ist durch die Kopplung zu den Phenylprotonen (höherer Ordnung) und die Kopplung zu H-2 aufgespalten. Die stereospezifische Kopplungskonstante ³J(C-i-H-2) muß in allen Fällen kleiner als 5 Hz sein, so daß demzufolge die Z-Konfiguration in allen Verbindungen 4-9 vorliegt.

Elektronische Effekte

Die zunehmende Tieffeldverschiebung des C-1-Signals und die zunehmende Hochfeldverschiebung des C-2Signals bei steigender Anzahl der konjugierten $C \equiv C$ -Dreifachbindungen wird einem Anstieg des π -Akzeptorvermögens der $(C \equiv C)_n$ -Phenylgruppe zugeordnet [17].

Die parallel dazu größer werdende ¹J (2) (siehe Tab. 2) spiegelt die Hybridisierungsänderung von C-2 durch die ansteigende Polarisierung der C = C-Bindung wider.

Frau Dr. S. Dunger sei für Unterstützung bei den präparativen Arbeiten, Frau B. Heinemann (Institut für Organische Chemie der Martin-Luther-Universität Halle-Wittenberg) für die Vermessung der UV-Spektren und Herrn L. Götz (Fachbereich Chemie der Universität Leipzig) für die Aufnahme der Massenspektren bestens gedankt.

Beschreibung der Versuche

Zur Schmelzpunktbestimmung diente ein Mikroheiztisch nach Boëtius; die Schmelzpunktangaben sind korrigiert. Die UV-Spektren wurden mit dem Gerät Beckman DK-2A und die Massenspektren mit den Geräten Varian CH6 bzw. CH8 aufgenommen. Die ¹H- und ¹³C-NMR-Spektren sind mit den Spektrometern Bruker WP 200 bzw. AM-300 gegen das jeweilige Solvens vermessen und auf TMS umgerechnet worden. Alle Verbindungen wurden mittels "proton composite pulse decoupling mode" und ohne Protonenentkopplung (digitale Auflösung: 0,3 Hz) vermessen. Nur bei der Verbindung 4 wurde selektive Protonenentkopplung angewendet.

Herstellung von 1,4-Diphenyl-butadiin (1) erfolgte durch Kupplung von Phenylacetylen gemäß [18].

1,6-Diphenyl-hexatriin (2) wurde aus der Bis-Grignardverbindung von Butadiin und Benzaldehyd über 1,6-Dihydroxy-1,6-diphenyl-hexa-2,4-diin, Hydroxy-Halogen-Austausch und Dehydrohalogenierung gemäß [19] gewonnen.

Modifizierte Herstellung von 1,8-Diphenyl-octatetrain (3) via 1-Phenylbutadiin in Anlehnung an Lit. [7]: Zur Suspension von 12,5 g (59 mmol) Phosphorpentachlorid in 50 ml absolutem Benzol werden 4,6g (28 mmol) Benzoylaceton unter Rühren bei 0 °C gegeben. Es wird bei 0 °C 30 min und bei Raumtemperatur weitere 30 min gerührt. Während einer Stunde wird das Reaktionsgemisch auf 60-65 °C erwärmt und 5 Stunden bei dieser Temperatur gehalten. Nach dem Abkühlen gibt man das Gemisch auf 100 ml Diethylether/ 200 g Eis. Die wäßrige Phase wird zweimal mit je 30 ml Diethylether extrahiert, die vereinigten Etherextrakte werden mit 10% iger wäßriger Sodalösung gewaschen und über Calciumchlorid getrocknet. Man tropft die etherische Lösung des rohen 1,1,3,3-Tetrachlor-1-phenyl-butans unter Inertgasschutz bei - 70 °C zu einem Gemisch aus 150 ml flüssigem Ammoniak, 200 mg (0,5 mmol) Eisen(III)nitrat und 6.2 g Natrium (270 mmol) über einen Zeitraum von 45 min, rührt anschließend weitere 90 min bei - 70 °C unter Inertgasschutz, trägt danach bei gleicher Temperatur solange Ammoniumchlorid ein, bis die dunkelgraue Färbung der Reaktionslösung nach braun-beige umgeschlagen ist. Nach Abdampfen des Ammoniaks filtriert man und wäscht zweimal mit 50 ml Diethylether nach. Das nach Verdampfen des Diethylethers im Vakuum (Badtemperatur maximal 15 °C) zurückbleibende braune Öl (rohes 1-Phenylbutadiin) wird sofort in 30 ml absolutem Methanol aufgenommen. Man setzt 0,2 g Kupfer(II)-chlorid und 3 ml Pyridin hinzu und leitet darauf 4-5 Stunden Sauerstoff ein. Das abgesaugte braunschwarze (teerartige) Rohprodukt wird mit ca. 100 ml Wasser gewaschen, getrocknet und säulenchromatographisch (150 ml Kieselgel 60; Benzin | Kp. 60 – 85 °C | /Benzol 2:1) aufgearbeitet. Es werden ca. 300 ml Eluat der ersten Substanz ($R_f = 0.62$) aufgefangen, im Vakuum eingeengt und aus Ethanol umkristallisiert.

Gelbe Nadeln, Schmp. $109-110 \,^{\circ}$ C (Lit. [6]: $109,5 \,^{\circ}$ C); Ausb.: $1,1-1,45 \,^{\circ}$ g ($31-42 \,^{\circ}$, bezogen auf eingesetztes Benzoylaceton). -UV (MeCN): $\lambda_{max} (\log \varepsilon) = 318 (4,44; 341,5 (4,53); 367 (4,53); 397 (4,33) nm. - ^{13}C-NMR (CDCl_3): \delta = 63,7; 67,2; 74,4; 77,7 (C = C); 120,5; 128,5; 130,0; 133,2 (Aromat) ppm.$

Mono-thiophenoladditionsprodukte (4, 6, 8) (allgemeine Arbeitsvorschrift)

Die aus 40 mg (1 mmol) Natriumhydroxid, 100 mg (0,91 mmol) Thiophenol und 5 ml absolutem Ethanol bereitete Lösung wird zu einer Lösung von 1 mmol des jeweiligen Polyins in 20 ml absolutem Ethanol getropft. Die Reaktionszeit beträgt 3-4 Stunden (Überleiten von Argon); für 4: Rückflußtemperatur; für 6 und 8: 40-45 °C. Bereits nach wenigen Minuten fällt ein orangegelber Feststoff aus. Nach Abkühlen auf Raumtemperatur und Einengen im Vakuum erfolgt säulenchromatographische Aufarbeitung (Kieselgel 60; Benzin | Kp. 60-85 °C | /Benzol 2:1): Die erste Sub-

stanzfront besteht aus wenig unumgesetztem Polyin (1, 2, 3), gefolgt von den Mono-additionsprodukten 4, 6 und 8. Die dritte Eluatfront liefert die mitgebildeten Bis-additionsprodukte 5, 7 und 9.

(Z)-1,4-Diphenyl-1-phenylthio-but-1-en-3-in (4)

Hellgelbe breite Nadeln; Schmp. 99 °C (Ethylacetat); Ausbeute: 200 mg (64 %); mitgebildetes Bis-additionsprodukt 5 nur in Spuren. – UV (MeCN):

$$\begin{split} \lambda_{max} & (\log \epsilon) = 226 \ (4,41); \ 290 \ (4,37); \ 325 \ (4,40) \ nm. \ - \ MS \\ & (70 \ eV): \ m/z = 312 \ (31 \ \%; \ M^+); \ 191 \ (64 \ \%; \ [M-C_6H_5CS]^+); \\ & 121 \ (100 \ \%; \ [C_6H_5CS]^+); \ 77 \ (47 \ \%; \ [C_6H_5]^+). \ - \\ & ^1H\text{-NMR} \ (CDCl_3): \ \delta = 6,32 \ (s; \ 1H; \ CH-C \equiv C); \ 7,01-7,74 \\ & (m; \ 15H; \ Aromat) \ ppm. \end{split}$$

(Z)-1,6-Diphenyl-1-phenylthio-hex-1-en-3,5-diin (6)

Hellgelbe kurze Nadeln; Schmp. $101 - 102 \,^{\circ}C$ (n-Hexan/ Benzol, 4:1); Ausbeute: $214 \,\text{mg}$ (63,5 %); mitgebildetes Bisadditionsprodukt 7: 68 mg (10 %). – UV (MeCN): λ_{max} ($\log \epsilon$) = $233 \,(4,48)$; 263 (4,41); 348 (4,40); 370 (4,30): – MS ($14 \,\text{eV}$): m/z = 336 (59 %; M⁺); 259 (34 %; [M-C₆H₅]⁺); 226 (100 %; [M-C₆H₅SH]⁺); 77 (93 %; [C₆H₅]⁺). – ¹H-NMR (CDCl₃): $\delta = 6,16$ (s; 1H; CH-C=C); 7,06 – 7,51 (m; 15H; Aromat) ppm

$C_{24}H_{16}S$	Ber.	C 85,67	H 4,76	S 9,53
(336,5)	Gef.	C 84,49	H 4,90	S 9,55

(Z)-1,8-Diphenyl-1-phenylthio-oct-1-en-3,5,7-triin (8)

Gelb-beige kurze Nadeln; Schmp. $121 - 124 \,^{\circ}C$ (n-Hexan/ Benzol 3:1); Ausbeute: 198 mg (55 %); mitgebildetes Bisadditionsprodukt 9: 99 mg (21 %). – UV: λ_{max} (log ε) = 254 (4,70); 284 (4,63); 361 (4,47); 385 (4,45) nm. – MS (14 eV): m/z = 360 (100 %; M⁺); 282 (8 %; [M-C₆H₃]⁺); 250 (29 %; [M-C₆H₅S]⁺); 77 (29 %; [C₆H₅]⁺). – ⁻¹H-NMR (CDCl₃): δ = 6,08 (s; 1H; CH-C = C); 7,09 – 7,53 (m; 15H; Aromat) ppm.

$C_{26}H_{16}S$	Ber.	C 86,63	H 4,47	S 8,89
(360,4)	Gef.	C 85,31	H 4,46	S 8,62

Bis-thiophenoladditionsprodukte (5, 7, 9) (allgemeine *Arbeitsvorschrift*)

Die Lösung aus 100 mg (2,5 mmol) Natriumhydroxid und 220 mg (2 mmol) Thiophenol in 5 ml absolutem Ethanol wird zu einer Lösung von 1 mmol des Polyins in 20 ml absolutem Ethanol unter Inertgasschutz getropft. Die Reaktionszeit beträgt 6 Stunden; für 5: Rückflußtemperatur; für 7 und 9 bei 50 – 60 °C. Das Reaktionsgemisch wird im Vakuum eingeengt und danach säulenchromatographisch aufgearbeitet (Kieselgel 60; Benzin Kp. 60 – 85 °C/Benzol 2:1), wobei die erste Fraktion geringe Mengen nichtumgesetztes Polyin enthält.

(Z,Z)-1,4-Diphenyl-1,4-bis(phenylthio)buta-1,3-dien (5)

Gelbe Nadeln; Schmp. 184 °C (Ethylacetat); Ausbeute: 245 mg (58 %). – UV (MeCN): λ_{max} (log ε) = 231,5 (4,44); 285 (4,22); 365 (4,49) nm. – MS (70 eV): m/z = 422 (1 %; M⁺); 313 (32 %; [M-C₆H₅S]⁺); 204 (31 %; [M-2C₆H₅S]⁺); 121 (100 %; [C₆H₅CS]⁺); 77 (64 %; [C₆H₅]⁺). – ⁻¹H-NMR (CDCl₃): $\delta = 6,29$ (s; 2H; 2CH-C \equiv C); 7,05 – 7,75 (m; 20H; Aromat) ppm.

$C_{28}H_{22}S_2$	Ber.	C 79,58	H 5,20	S 15,17
(422,6)	Gef.	C 79,57	H 5,37	S 13,98

(*Z*,*Z*)-1,6-Diphenyl-1,6-bis(phenylthio)hexa-1,5-dien-3-in (7)

Gelbe Nadeln; Schmp. $168 - 170 \,^{\circ}C$ (n-Hexan/Benzol 4:1); Ausbeute: 273 mg (61 %). – UV (MeCN): λ_{max} (log ϵ) = 232 (4,49); 372 (4,45) nm. – MS (70 eV): m/z = 446 (7 %; M⁺); 337 (23 %; [M-C₆H₅S]⁺); 303 (26 %; [M-C₆H₅S-H₂S]⁺); 260 (49 %; [M-C₆H₅S-C₆H₅]⁺); 226 (100 %; [M-C₆H₅S-C₆H₅-H₂S]⁺); 109 (47 %; [C₆H₅S]⁺); 77 (54 %; [C₆H₅]⁺). – ¹H-NMR (CDCl₃): δ = 6,30 (s; 2H; 2CH-C = C); 7,16–7,58 (m; 20H; Aromat) ppm.

(Z,Z)-1,8-Diphenyl-1,8-bis(phenylthio)octa-1,7-dien-3,5diin (9)

Orangegelbe kurze Nadeln; Schmp. $169 - 172 \,^{\circ}C$ (n-Hexan/ Benzol 4:1); Ausbeute: 305 mg (65 %). – UV (MeCN): λ_{max} (log ε) = 246 (4,51); 382 (4,48) nm. – MS (14 eV): m/z = 470 (100 %; M⁺); 359 (51 %; [M-C₆H₅-H₂S]⁺); 250 (30 %; [M-C₆H₅S-C₆H₅-H₂S]⁺); 77 (26 %; [C₆H₅]⁺). – ¹H-NMR (CDCl₃): δ = 6,16 (s; 2H; 2CH-C = C); 7,07 – 7,47 (m; 20H; Aromat) ppm.

$C_{32}H_{22}S_2$	Ber.	C 81,17	H 4,67	S 13,62
(470,6)	Gef.	C 81,77	H 4,70	S 12,51

Literatur

- [1] Vgl. dazu Übersichten in:
 - a) H.G. Viehe (Ed.): Chemistry of Acetylenes, M. Dekker, New York 1969;
 - b) S. Patai (Ed.): The Chemistry of the Carbon-Carbon Triple Bond, John Wiley and Sons, Chichester, New York, Brisbane, Toronto, 1978; speziell Kapitel 13 (W.D. Huntsman) und 19 (J.I. Dickstein, S.I. Miller);
 - c) Houben-Weyl, Methoden der organischen Chemie, Bd. V/2a (Ed.: E. Müller), Georg Thieme Verlag, Stuttgart 1977; speziell S. 913 ff: Methoden zur Herstellung und Umwandlung von konjugierten Di- und Polyinen (U. Niederball).
- [2] Vgl.
 - a) H.G. Viehe in Ref. [1 a], S. 267 (Addition von Methanthiol an Deca-2,4,6,8-tetrain);
 - b) F. Bohlmann, C. Arndt, J. Starmich: Tetrahedron Lett. 1963, 1605;
 - c) W. Schroth, H. Langguth, F. Billig: Z. Chem. 5 (1965) 352;
 - d) A.N. Volkov; Y.M. Skvortsov, I.I. Danda, M.F. Shostakowski: Zh. Org. Khim. 6 (1967) 897;
 - e) I.L. Mikhelashvili, E.N. Prileshaeva: Zh. Org. Khim. 10 (1974) 2524;
 - f) B.S. Thyagarajan, R.A. Chandler: J. Chem. Soc., Chem. Commun. 1990, 328;

- g) Zur Methanol-Addition an Polyine, s. F. Bohlmann, H.G. Viehe: Chem. Ber. 88 (1955) 1017.
- [3] Vgl. dazu:
 - a) W. Schroth, J. Peschel, A. Zschunke: Z. Chem. 9 (1969) 108, 110, 143;
 - b) Zusammenfassung in W. Schroth: Khim. Gheterotsikl. Soedin. **1985**, 1443; speziell 1461.
- [4] Vgl.
 - a) W. Schroth, F. Billig, G. Reinholdt: Angew. Chem.
 79 (1967) 685; Angew. Chem., Int. Ed. Engl. 6 (1967) 698;
 - b) Zu einer ersten NMR-spektroskopischen Analyse der Vorstufen s. auch R. Radeglia, H. Poleschner, W. Schroth: Z. Naturforsch. 43 b (1988) 605.
- [5] Vgl. dazu
 - a) F. Bohlmann, K.-M. Kleine: Chem. Ber. 98 (1965) 3081; F. Bohlmann, E. Bresinsky: Chem. Ber. 100 (1967) 107;
 - b) J.T. Mortensen, J.S. Sörensen, N.A. Sörensen: Acta Chem. Scand. 18 (1964) 2392;
 - c) Zur Bezeichnung "Thiarubrines": R.A. Norton, A.J. Finlayson, G.H.N. Towers: Phytochem. 24 (1985) 356; G.H.N. Towers, Z. Abramowski, A.J. Finlayson, A. Zucconi: Planta Med. 1985, 225.
- [6] F. Bohlmann, P. Herbst, H. Gleinig: Chem. Ber. 94 (1961) 948.
- [7] W.N. Andrijewski, J.L. Kotljarowskij, M.S. Schwarzenberg: Izv. Acad. Nauk SSSR 1966, 882.
- [8] E. Hintzsche, W. Schroth: Veröffentlichung im anderen Zusammenhang.
- [9] M.T. Hearn: Org. Magn. Reson. 9 (1977) 141.
- [10] P.E. Hansen, O.K. Poulsen, A. Berg: Org. Magn. Reson. 7 (1975) 405.
- [11] L.B. Krivkin, V.V. Sherbakov, G.A. Kalabin: Zh. Org. Khim. 23 (1987) 2070.
- [12] H.-O. Kalinowski, S. Berger, S. Braun: ¹³C-NMR-Spektroskopie, Georg Thieme Verlag, Stuttgart, New York, 1984.
- [13] D.F. Ewing: Org. Magn. Reson. 12 (1979) 499.
- [14] K. Bachmann, W. von Philipsborn: Org. Magn. Reson. 8 (1976) 648.
- [15] R.V. Dubs, W. von Philipsborn: Org. Magn. Reson. 12 (1979) 326.
- [16] U. Vogeli, W. von Philipsborn: Org. Magn. Reson. 7 (1975) 617.
- [17] I. Bernardi, A. Magini, N.D. Epiotis, J.R. Larson, S. Shaik: J. Am. Chem. Soc. 99 (1977), 7465.
- [18] K.E. Schulte, J. Reisch, L. Hörner: Chem. Ber. 95 (1962) 1943.
- [19] J.W. Armitage, N. Entwistle, E.R.H. Jones, M.C. Whiting: J. Chem. Soc. [London] 1954, 147.

Korrespondenzanschrift:

Prof. Dr. W. Schroth

Martin-Luther-Universität Halle-Wittenberg, Institut für Organische Chemie

Weinbergweg 16

O-4050 Halle (Saale), Bundesrepublik Deutschland