COMMUNICATION

SYNTHESIS AND CRYSTAL STRUCTURE OF [N,N'-BIS(2,3,5,6-TETRAFLUOROPHENYL)-ETHANE-1,2-DIAMINATO(2-)|DIPYRIDINEPLATINUM(II)

G. B. DEACON*, B. M. GATEHOUSE, I. L. GRAYSON and M. C. NESBIT Chemistry Department, Monash University, Clayton, Victoria 3168, Australia

(Received 3 October 1983; accepted 21 November 1983)

Abstract—The reaction of $PtCl_2en$ (en = ethane-1,2-diamine) with $TlO_2CC_6F_5$ in boiling pyridine unexpectedly yielded a polyfluorophenyl-stabilized ethane-1,2-diaminatoplatinum(II) complex, $Pt[N(p-HC_6F_4)CH_2]_2(py)_2$,1a, the structure of which has been established by X-ray crystallography.

Decarboxylation reactions between $PtCl_2L_2$ [e.g. $L_2 = 2,2'$ -bipyridyl(bpy) or *trans*-(pyridine)₂] complexes and thallous polyfluorobenzoates in boiling pyridine yield R_2PtL_2 (e.g. $R = C_6F_5$ or p-HC₆F₄) and RPtClL₂ organometallics,¹ e.g. $PtCl_2L_2 + 2TIO_2CR \rightarrow R_2PtL_2 + 2CO_2 + 2TICl$. We now report that the corresponding reaction of $PtCl_2en$ (en = ethane-1,2-diamine) with thallous penta-fluorobenzoate does not give $(C_6F_5)_2Pten$ or $C_6F_5PtClen$, but surprisingly an N-(2,3,5,6-tetra-fluorophenyl) substituted ethane-1,2-diaminato-platinum(II) complex is obtained.

Reaction of stoichiometric amounts of the reagents in boiling pyridine for 60 min under nitrogen gave carbon dioxide (95%). Evaporation of the reaction mixture to dryness, extraction with acetone, filtration to remove thallous chloride, and crystallization from acetone/petroleum ether gave 1a as the air-stable, yellow, 1:1 acetone solvate in 37% yield, m.p. $170-171^{\circ}$ (dec.)†. The structure (Fig. 1) was established by X-ray crystallography. Crystal data 1a.Me₂CO: C₂₇H₂₄N₄OF₈Pt,

1a $R = p - HC_6F_4$ **1b** R = H**1c** $R = C_6F_5$

M = 767.59, monoclinic, a = 19.044(8), b =14.006(7), c = 11.223(6) Å, $\beta = 110.73(5)^{\circ}$, U =2800Å³. D_m (flotation) = 1.82(1), $D_c = 1.82 \text{ g cm}^{-3}$ for z = 4. Mo K_{α} , $\lambda = 0.7107$ Å, $\mu = 48.7$ cm⁻¹, F(000) = 1487.64, 298 K. Space group C2/c or Cc, the former confirmed by successful refinement. The molecule possesses a 2-fold axis of symmetry. Tabular crystal $(0.20 \times 0.06 \times 0.11 \text{ mm})$, Philips PW1100 diffractometer (graphite monochromator); cell parameters from 25 reflections θ 8-15°; absorption correction applied, transmission maximum 0.7449, minimum 0.5926. Sin θ/λ max. $\pm hkl, \pm 23$, 18, 14. Three standard 0.704. reflections (2hr intervals) showed no significant intensity variation. 4274 reflections measured (ω scans, scan width $\pm 1.5^{\circ}$ in 2θ + dispersion allowance), 4083 unique reflections (R_{int} 0.038) with 2806 unobserved (I \ge 3 σ (I)). Structure solution by Patterson and Fourier methods, full-matrix least

^{*}Author to whom correspondence should be addressed.

 $^{^{\}dagger}$ New complexes 1a.Me₂CO and 1c were obtained analytically pure with satisfactory 1H and 19F NMR spectra.

Fig. 1. Structure of $C_{24}H_{18}N_4F_8Pt.C_2H_6O$ (1a.Me₂CO)—Acetone not located (see text). Selected bond lengths (Å) and angles (°) are:

Pt-N(1)	1.98(2)	N(1)-Pt-N(1)	90(1)
Pt-N(2)	2.08(2)	N(1)– Pt – $N(2)$	95(1)
N(2)-C(6)	1.45(3)	N(2)-Pt-N(2)	80(1)
N(2)-C(7)	1.35(2)	C(6)-N(2)-C(7)	126(2)
C–N(py)	1.36-1.40	C(6)-N(2)-Pt	109(1)
C-C(py)	1.31-1.37	C(7) - N(2) - Pt	123(1)
C-C(arom)	1.34-1.42	C(6)-C(6)-N(2)	116(2)
C-F(arom)	1.33-1.36		

squares refinement (F magnitudes), 175 parameters refined (all non-hydrogen atoms anisotropic), R 0.054, wR 0.047 ($w = 1/\sigma^2(F)$). Maximum shift to E.S.D. (U₁₂ of N(1)) was 0.026; maximum and minimum peak heights in final difference Fourier synthesis were 2eÅ⁻³ and 1eÅ⁻³ respectively in vicinity of disordered acetone molecule positions. Atomic scattering factors (neutral atoms) from Ref. 2. Programs used were SHELX³ and ORTEP⁴; data reduction methods were as described previously⁵.[†]

The molecule is illustrated in the figure with the numbering scheme used and selected bond lengths. The disordered acetone molecule, whose presence was inferred from analytical, spectroscopic $[\nu_{CO}: 1709 \text{ cm}^{-1}]$, and density measurements was not located. Peaks in the difference Fourier synthesis implied that it was situated about the centre of symmetry at 1/2 0 1/2. A cavity of radius 3.372 Å exists around 1/2 0 1/2 providing ample space for an acetone molecule in any orientation.

It is of interest to note that Pt-N(2) (anionic) is

longer than Pt-N(1) (neutral) and this may be attributed to the electron withdrawing character of the polyfluorophenyl substituent. This is supported by the $(p-HC_6F_4)-N$ distance which is closer to that of an aromatic C----N distance than a single C-N bond.

The reaction path to 1a is considered to involve formation of $[Pten(py)_2](O_2CC_6F_5)_2$ 2 by substitution and metathesis,

$$PtCl_{2}en + 2py + 2TlO_{2}CC_{6}F_{5} \rightarrow 2 + 2TlCl \quad (1)$$

followed by decarboxylation and proton abstraction by the highly carbanionic C_6F_5 groups giving pentafluorobenzene and the ethane-1,2diaminatoplatinum(II) intermediate 1b,

$$\mathbf{2} \rightarrow \mathbf{1b} + 2\mathbf{C}_{6}\mathbf{F}_{5}\mathbf{H} + 2\mathbf{CO}_{2} \tag{2}$$

and then nucleophilic attack by the secondary amine nitrogens of 1b on pentafluorobenzene.

$$1\mathbf{b} + 2\mathbf{C}_6\mathbf{F}_5\mathbf{H} + 2\mathbf{p}\mathbf{y} \rightarrow \mathbf{1a} + 2\mathbf{p}\mathbf{y}\mathbf{HF}.$$
 (3)

Support for this path is provided by the following observations: The complex [Pten(py)₂]Cl₂, obtained from PtCl₂en in boiling aqueous pyridine,⁶, reacts with thallous pentafluorobenzoate in pyridine at room temperature to give **2**, which yields **1a** in

[†]Atomic and thermal parameters, observed and calculated structures together with a list of bond lengths and angles have been deposited with the Editor, from whom copies are available on request. Atomic Co-ordinates have also been deposited with the Cambridge Crystallographic Data Centre.

boiling pyridine [reactions (2) and (3)]. Monitoring reaction (1) by ¹⁹F NMR spectroscopy reveals the presence of pentafluorobenzene in the reaction mixture as required by reactions (2) and (3). Reaction of PtCl₂en with thallous 2,3,5,6-tetrafluorobenzoate in boiling pyridine yields 1,2,4,5tetrafluorobenzene, which is much less reactive than C₆F₅H to nucleophilic attack,⁷ and an airsensitive intermediate, plausibly **1b**, which reacts with added pentafluorobenzene and hexafluorobenzene to give **1a** and **1c** respectively.

The present reactions provide a convenient synthesis of air-stable ethane-1,2-diaminatoplatinum-(II) complexes, which are stabilised by polyfluorophenyl substitution on nitrogen. Previous ethane-1,2-diaminatoplatinum(II) complexes, e.g. Pt(NHCH₂)₂bpy,⁸ have been prepared under forcing conditions, viz. deprotonation of ethane-1,2diamineplatinum(II) complexes by potassium amide in liquid ammonia, and are highly moisture sensitive (e.g. Refs. 8 and 9). Analogous decarboxylation reactions may provide a route to stabilised diorganoamido derivatives of other precious metals.

Acknowledgement—We are grateful for assistance from the Australian Research Grants Scheme, for C.P.R.A. assistance to I.L.G. and an M.G.S. for M.C.N.

REFERENCES

- 1. G. B. Deacon and I. L. Grayson, Trans. Met. Chem. 1982, 7, 97.
- D. T. Cromer and J. T. Waber; D. T. Cromer and J. A. Ibers, In *International Tables for X-ray Crystallography*, Vol. IV. Kynoch Press, Birmingham (1974).
- 3. G. M. Sheldrick, "SHELX-76" (A Program for Crystal Structure Determination). Cambridge University (1976).
- 4. C. K. Johnson, "ORTEP". Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- 5. B. M. Gatehouse, T. Negas and R. S. Roth, J. Solid State Chem. 1976, 18, 1.
- 6. Gmelin Handbook of Inorganic Chemistry, Main Series, Vol. 68D, p. 173. Verlag Chemie, Weinheim (1957).
- R. D. Chambers, W. K. R. Musgrave, J. S. Waterhouse, D. L. H. Williams, J. Burdon, W. B. Hollyhead and J. C. Tatlow, J. Chem. Soc., Chem. Commun. 1974, 239.
- G. W. Watt and D. G. Upchurch, J. Am. Chem. Soc. 1968, 90, 914.
- G. W. Watt and J. E. Cuddeback, *Inorg. Chem.* 1971, 10, 947.