SYNTHESE TERNÄRER NITRIDE VON ALKALIMETALLEN: VERBINDUNGEN MIT TANTAL, MTaN₂ MIT M ≡ Na, K, Rb UND Cs

H. JACOBS und E. VON PINKOWSKI

Fachbereich Chemie der Universität Dortmund, Postfach 500 500, D-4600 Dortmund 50 (F.R.G.)

(Eingegangen am 23. Juni, 1988)

Zusammenfassung

Tantal(V)-verbindungen (z.B. Ta_3N_5 , Ta_2O_5 , $TaCl_5$, NH_4TaF_6) reagieren mit überschüssigem Alkalimetallamid, MNH_2 mit $M \equiv Na$, K, Rb, Cs in Autoklaven bei 400 bis 800 °C u.a. zu ternären Nitriden, $MTaN_2$. Durch Auswaschen der Produkte mit H_2O (Na TaN_2) bzw. flüssigem NH_3 bei Raumtemperatur werden die reinen Verbindungen als feinkristalline Pulver isoliert.

NaTaN₂ ist gelb. Es kristallisiert nach Röntgen- und Neutronenbeugungsdaten im α -NaFeO₂-typ: $R\bar{3}m$, Z=3 mit a=3,139(1) Å und c=16,925(5) Å. Die Verbindung ist chemisch sehr beständig; sie löst sich in heisser, konzentrierter H_2SO_4 .

KTaN₂ und RbTaN₂ sing gelbgrün. Ihre Röntgendiagramme ergeben analog zu KGaO₂ ausgewertet: Pbca, Z=16 mit KTaN₂: a=5,929(1) Å, b=11,862(3) Å, c=16,597(4) Å; RbTaN₂: a=6,052(2) Å, b=12,103(5) Å, c=17,016(7) Å.

CsTaN₂ ist gelb und kristallisiert nach Röntgen- und Neutronenbeugungsdaten kubisch in einem aufgefüllten β -Cristobalittyp: Fd3m, Z=8 mit a=8,7726(1). Die N-Lage ist wie diejenige von O in der entsprechenden SiO₂-Modifikation fehlgeordnet. Die Strukturen von KTaN₂ und RbTaN₂ sind niedersymmetrische Varianten derjenigen von CsTaN₂. Die Hydrolysebeständigkeit der Nitride ändert sich deutlich von der Na- zur K-Verbindung und nimmt zur Cs-Verbindung hin ab.

Summary

Tantalum(V)-compounds (e.g. Ta_3N_5 , Ta_2O_5 , $TaCl_5$, NH_4TaF_6) react with an excess of alkali metal amides, MNH_2 with $M \equiv Na$, K, Rb, Cs, in autoclaves at 400 to 800 °C to form ternary nitrides $MTaN_2$ as well as other products. By washing with $H_2O(NaTaN_2)$ or liquid NH_3 at room temperature the pure compounds are isolated as microcrystalline powders.

NaTaN₂ is yellow. It crystallizes, according to X-ray and neutron diffraction data, with the α -NaFeO₂-type structure: $R\bar{3}m$, N=3 with a=3.139(1) Å and c=16.925(5) Å. The compound is chemically very stable. It dissolves in hot concentrated H₂SO₄.

KTaN₂ and RbTaN₂ are yellow-green. Their X-ray diagrams can be interpreted by analogy to KGaO₂: Pbca, N = 16 with KTaN₂, a = 5.929(1) Å, b = 11.862(3) Å, c = 16.597(4) Å; RbTaN₂, a = 6.052(2) Å, b = 12.103(5) Å, c = 17.016(7) Å.

CsTaN₂ is yellow and crystallizes, according to X-ray and neutron diffraction data, in a filled β -cristobalite type of structure: Fd3m, N=8 with a=8.7726(1). Nitrogen is disordered as oxygen in the corresponding SiO₂-modification. The structures of KTaN₂ and RbTaN₂ are variants of lower symmetry of that of CsTaN₂. The resistivity against moisture drops markedly from the sodium to the potassium compound and decreases to that of caesium.

1. Einführung

Nitride von Alkalimetallen ausser von Lithium scheinen als reine Substanzen nicht bekannt zu sein. Von Li₃N ist die Struktur bereits 1935 von Zintl und Brauer [1] bestimmt worden. In neuerer Zeit erlangte es wegen seiner hohen Ionenleitfähigkeit besonderes Interesse [2]. Auch ternäre Nitride mit Alkalimetallen sind nur von Lithium in grösserer Zahl charakterisiert worden. So konnten Juza, Gieren und Haug [3] z.B. Li₇TaN₄ darstellen. Bei den schweren Homologen gibt es bisher nur ein Beispiel mit Natrium, NaGe₂N₃ [4].

Hier berichten wir über eine Synthesemethode für ternäre Nitride auch der schwereren Alkalimetalle. Am Beispiel von Tantalverbindungen, $MTaN_2$ mit $M \equiv Na$ bis Cs werden erste Ergebnisse vorgestellt.

2. Experimentelles

Bisher wurden ternäre Nitride wie z.B. Li₇TaN₄ [3] durch Umsetzung von Gemengen binärer Verbindungen in Feststoffreaktionen unter NH₃ oder N₂ erhalten. Nach dieser Methode scheinen Verbindungen mit den schwereren Alkalimetallen nicht zugänglich zu sein. Dies gelingt jedoch, wenn Alkalimetallamide neben anderen Tantalverbindungen als Edukt eingesetzt werden.

Tantal(V)-verbindungen wie Ta $_3$ N $_5$, Ta $_2$ O $_5$, TaCl $_5$ und NH $_4$ TaF $_6$ reagieren mit überschüssigem Alkalimetallamid, MNH $_2$ mit M \equiv Na, K, Rb und Cs in Autoklaven [5] bei Temperaturen 400 °C \leq T \leq 800 °C u.a. zu ternären Nitriden, MTaN $_2$.

2.1. Edukte

Ta₃N₅ wurde durch Umsetzung von Ta₂O₅ (Fa. Ventron, Karlsruhe) mit NH₃ in einer Strömungsapparatur nach [6] dargestellt und röntgenographisch und nasschemisch charakterisiert. Ta₂O₅, TaCl₅ und NH₄TaF₆ wurden von der Fa. Ventron bezogen, Amide der Alkalimetalle erhielten wir aus den Metallen (Na, p.a., Fa. E. Merck, Darmstadt; K purified, Fa. Baker Chem. Co., Phillipsburg, NJ, U.S.A., Rb und Cs 99,98% der Fa. Koch-Light

Laboratories Ltd., Colnbrook, U.K.) und NH₃ (99,999% der Fa. Air Liquide, Düsseldorf) in Autoklaven [5].

 Ta_3N_5 reagiert ab 400 °C mit Alkalimetallamiden (Ta_3N_5 : $MNH_2 \le 1:6$) innerhalb weniger Tage unter Bildung von ternären Nitriden

$$Ta_3N_5 + 3MNH_2 \longrightarrow 3MTaN_2 + 2NH_3$$

Analog führten die Umsetzungen mit anderen Tantalverbindungen zum Ziel:

Eduktverhältnis

$$\begin{split} &\text{Ta}_2\text{O}_5 + 7\,\text{MNH}_2 \longrightarrow 2\,\text{MTaN}_2 + 5\,\text{MOH} + 3\,\text{NH}_3 \leqslant 1:8 \\ &\text{TaCl}_5 + 6\,\text{MNH}_2 \longrightarrow \text{MTaN}_2 + 5\,\text{MCl} + 4\,\text{NH}_3 \leqslant 1:8 \\ &\text{NH}_4\text{TaF}_6 + 7\,\text{MNH}_2 \longrightarrow \text{MTaN}_2 + 6\,\text{MF} + 6\,\text{NH}_3 \leqslant 1:10 \end{split}$$

Mit steigender Reaktionstemperatur sind die ternären Nitride besser kristallin, aber die im Überschuss eingesetzten Metallamide zersetzen sich zunehmend zu Alkalimetall, N_2 , H_2 etc. Daher ist bei hohen Temperaturen ein NH_3 -Druck $\geqslant 1$ kbar erforderlich.

Die Handhabung der festen Edukte geschah durchweg in mit Ar gefüllten Handschuhkästen [5].

Zur Isolierung der Nitride $MTaN_2$ wurden die Produktgemenge im Falle der Na-Verbindung mit H_2O bei K bis Cs mit flüssigem NH_3 bei Raumtemperatur ausgewaschen. $NaTaN_2$ ist gegen H_2O und andere Lösungsmittel sowie gegen Sauerstoff beständig. Bis 950 °C zeigen DTA-Messungen geringe Zersetzung an. Die Verbindung sieht intensiv gelb aus.

 ${\rm KTaN_2}$ bis ${\rm CsTaN_2}$ hydrolysieren an der Luft zunehmend. Daher müssen die Begleitprodukte mit flüssigem ${\rm NH_3}$ herausgelöst werden. ${\rm KTaN_2}$ und ${\rm RbTaN_2}$ sehen grüngelb aus, ${\rm CsTaN_2}$ ist gelb.

An den Nitriden wurden quantitativ analytische Untersuchungen durchgeführt: Nach Lösen von MTaN₂ in konzentrierter heisser Schwefelsäure und Aufbereitung der Lösungen wurden Na und K flammenphotometrisch (Spektralphotometer Modell 1248, Fa. Beckmann, München) sowie Na mit einer Na-selektiven Elektrode (Fa. Ingold, Frankfurt) bestimmt; K, Rb und Cs mit Natriumtetraphenylborat (Fa. E. Merck, Darmstadt), N- und H-Gehalte wurden mit einer Verbrennungsapparatur (Elemental Analyser 1106, Fa. Erba, Mailand) ermittelt. Die Verbindungen enthalten innerhalb der Erfassungsgrenze kein H. Das M:Ta-Molverhältnis ergab sich über EDAX-Analysen (EDAX Modell 711, Fa. EDAX Int. Inc., IL, U.S.A.). Tabelle 1 zeigt die Ergebnisse.

2.2. Röntgen- und Neutronenbeugungsdaten

Von den Verbindungen wurden Guinier Diagramme (Guinier-Simon, Fa. Enraf-Nonius, Cu K α_1 ; α -Quarz [7]) angefertigt und ausgewertet. Für NaTaN $_2$ und CsTaN $_2$ diente auch die Neutronenbeugung zur Charakterisierung (NaTaN $_2$ bei 295 K, λ = 1,09 Å, DiDO, Jülich; CsTaN $_2$ 16 K und 295 K, DiDO, Jülich; 10 K, λ = 2,016 Å, Ris ϕ ; Röntgenbeugungsmessungen an NaTaN $_2$ (Stadi/2 PL, Fa. Stoe, Darmstadt) und CsTaN $_2$ (PW 1050/25, Fa.

TABELLE 1 Ergebnisse quantitativ analytischer Untersuchungen an Alkalimetalltantalnitriden, MTa N_2 und $M \equiv Na, K, Rb, Cs$

	$M_{ m gem} \ ({ m Gew.\%})$	$M_{ m ber}$ (Gew.%)	$N_{ m gem} \ ({ m Gew.\%})$	$N_{ m ber} \ ({ m Gew.\%})$	EDAX M:Ta
NaTaN ₂	9,9	9,9	12,0	12,1	1:1
KTaN ₂	15,5	15,8	11,1	11,3	1:1
$RbTaN_2$	28,7	29,0	9,3	9,5	1:1
CsTaN ₂	38,3	38,9	8,1	8,2	1:1

Philips, Eindhoven). Na TaN_2 kristallisiert rhomboedrisch. Es treten weder in den Röntgen- noch in den Neutronenbeugungsdiagrammen über die allgemeine Auslöschungsbedingung hinausgehende auf, noch wurden nicht erfassbare Reflexe beobachtet. Somit kommen für die Strukturbestimmung die Raumgruppen $R\bar{3}$, $R\bar{3}$,

Tabelle 3 enthält für die ersten 20 Reflexe d-Werte sowie gemessene und berechnete Intensitäten für die Röntgen- und Neutronenbeugung an NaTaN₂.

TABELLE 2 Kristallographische und messtechnische Daten zur Strukturbestimmung an $NaTaN_2$

	Röntgendaten		Neutronendaten	
	z	B (Å ⁻²)	z	B (Å ⁻²)
3 Ta in 3a 3 Na in 3b		2,3(2) 4(1)		0,5(1) 1,5(2)
6 N in 6c	0,268(4) $z(F_0) = 32$ Z(Var) = 5	1(2)	0,2690(2)	0,73(5)
	R = 0.073		R(I) = 0.059	
	$R_{\rm w} = 0.088$		$\lambda = 1.09 \text{ Å}$	
	$\lambda = 1,54051 \text{ Å}$		$2\theta \le 85.4^{\circ}$	
	$2\theta \le 90^{\circ}$ a = 3,139(1) Å		a = 3,1342(6) Å c = 16,978(2) Å	
	a = 3,139(1) A		c - 16,976(2) A	
	c = 16,925(2) Å $\rho = 8,00 \text{ g cm}^{-3}$			

h k l	$d_{ m gem}$	$d_{\mathbf{ber}}$	Röntgen		Neutror	ien
			$I_{ m gem}$	Iber	$I_{ m gem}$	$I_{ m ber}$
00 3	5,6385	5 ,644 7	70	80	31	28
006	2,8217	2,8224	27	29	1	1
10 1	2,6840	2,6841	44	50	0	0
012	2,5891	2,5883	62	65	11	11
104	2,2873	2,2875	100	124	100	102
015	2,1198	2,1200	28	23	5	6
009	1,8802	1,881 6	7	5	5	5
107	1,8033	1,8072	33	23	25	26
018	1,6711	1,6702	41	30	34	32
11 0	1,5695	1,5695	37	28	55	53
113	1,5121	1,5122	31	25	13	12
1 0 10	1,4370	1,4374	19	14	0	1
0 0 12	1,4103	1,4112	4	6	3	3
116	1,3720	1,3717	33	27	1	1
021	1,3552	1,3549	9	8	1	0
202	1 2414	1,3421)	10	12	3	3
0 1 11	1,8414	1,3396	19	11	22	21
024	1,2941	1,2942	15	17	31	30
205	1,2615	1,2614	7	7	1	2
11 9	1,2046	1,2050	12	13	11	11

a = 3,139(1) Å, c = 16,925(5) Å.

KTaN₂, RbTaN₂ und CsTaN₂ sind nach ihren Röntgenpulverdiagrammen strukturverwandt. Die K- und Rb-Verbindung zeigen in Guinierdiagrammen eine Reflexabfolge, deren Lage und Intensitäten klar einen verzerrten CsTaN₂-typ nahelegen. Da CsTaN₂ kubisch kristallisiert, haben wir uns bemüht, dessen Struktur weitgehend aus Pulverdaten zu klären, um Aussagen über die K- und Rb-Verbindung machen zu können.

 CsTaN_2 lässt sich nach Guinierdaten eindeutig kubisch indizieren. Neutronenbeugung wurde durchgeführt, um Aussagen über die N-Verteilung machen zu können. Für die Strukturbestimmung [9] kommen bei acht Formeleinheiten in der Elementarzelle und nach den zusätzlichen Auslöschungen nur die Raumgruppen Fd3 und Fd3m in Betracht. Die höhersymmetrische Anordnung in Fd3m ergab sich erst bei der Auswertung der Neutronenbeugungsmessungen [8] über die N-Teilstruktur. Die Ergebnisse der Berechnungen sind in Tabelle 4 zusammengestellt.

Tabelle 5 enthält charakteristische Daten für Pulverdiagramme von $CsTaN_2$ für die Röntgen- und Neutronenbeugung. $KTaN_2$ und $RbTaN_2$ lassen nach ihren Guinierdiagrammen eine verzerrte $CsTaN_2$ -Anordnung erwarten. Für $KGaO_2$ [11] wurde z.B. eine derartige Struktur ermittelt. Die Indizierung der Messwerte und die mit den Strukturdaten von $KGaO_2$ als $KTaN_2$ und $RbTaN_2$ berechneten Intensitäten zeigen, dass mit dem

TABELLE 4 Kristallographische und messtechnische Daten zur Strukturbestimmung an ${\rm CsTaN}_2$

	Röntgendaten		Neutronendaten					
	×	$B(A^{-2})$	300 K		16 K		10 K	
			×	B (Å-2)	×	B (Å-2)	ห	B (Å-2)
8 Ta in 8a 8 Cs in 8b		4,3(2) 6,5(3)		0,9(1) 2,0(2)		0,2(1) 0,9(2)		0,5(2)
16 N in 96h	0,023(8) Cu $R\alpha$ $Z(F_0) = 41$	2(2)	0,0274(7)	1,5(2)	0,0321(6)	0,3(2)	0,0311(9)	1,0(3)
	Z(Var) = 5 R = 0.066		R(I) = 0.077		R(I) = 0.073		R(I) = 0.024	
	$R_{\rm w} = 0.067$		λ = 1,09 Å		λ = 1,09 A		$\lambda = 2,016 \text{ Å}$	
	$2\theta < 130^{\circ}$		2 <i>θ</i> < 88°		2θ < 88°		2θ < 88°	
	a = 8,7726(1) Å		a = 8,779(1) Å		a = 8,726(1) Å		a = 8,7431(8) Å	
	p = 0,10 g cm							

TABELLE 5 Daten zu Röntgen- und Neutronenbeugungsdiagrammen von CsTaN₂ (vgl. Tabelle 4)

h k l	$d_{ m gem}$	$d_{ m ber}$	Röntg	en	Neutr	onen				
			I_{gem}	I _{ber}	295 F	<u> </u>	16 K		10 K	
					$I_{ m gem}$	$I_{ m ber}$	$I_{ m gem}$	$I_{ m ber}$	$I_{ m gem}$	Iber
111	5,0508	5,0604	7	6	100	100	100	101	91	90
220	3,0992	3,0989	100	112	76	75	78	77	84	82
311	2,6438	2,6427	1	1	44	45	51	49	53	51
222	2,5269	2,5302	1	0	64	65	69	67	63	65
400	2,1917	2,1912	18	18	0	2	1	1	0	1
3 3 1	2,0107	2,0108	3	2	31	33	33	33	Koinz Küv	
422	1,7904	1,7891	50	47	58	56	69	69	78	78
$511 \\ 333$	1,6868	1,6868	1	1	8 1	6 1	5 0	5 0	6 1	7 1
440	1,5505	1,5494	15	17	72	76	87	85	100	98
531	1,4819	1,4815	2	1	37	34	40	37		
442		1,4608	0	0	1	1	8	3		
620	1,3875	1,3859	15	20	34	35	48	50		
533		1,3366	0	0	4	5	3	6		
622	*****	1,3214	0	0	17	20	13	19		
444	1,2646	1,2651	3	5	0	0	0	1		

Modell ein sinnvoller Strukturvorschlag gegeben ist. Die Daten hierzu finden sich in Tabelle 6.

3. Diskussion der Ergebnisse

Über die neuartige Darstellungsmethode von ternären Tantalnitriden mit Alkalimetallen, $MTaN_2$ wobei $M \equiv Na$ bis Cs entspricht, ist gezeigt, dass derartige Substanzen als stabile Verbindungen zugänglich sind [12]. Es gelang uns bisher nicht, die Nitride durch röntgenographische Strukturbestimmung an Einkristallen zu charakterisieren. Für $NaTaN_2$ und $CsTaN_2$ waren die Auswertungen von Röntgen- und Neutronenbeugungsmessungen an Kristallpulvern soweit erfolgreich, dass ihre Strukturen vorgestellt und diskutiert werden sollen.

NaTaN₂ kristallisiert in α -NaFeO₂-typ. In einer verzerrt kubisch dichten Nitridionenpackung sind alle Oktaederlücken schichtenweise abwechselnd durch Natrium bzw. Tantal besetzt (vgl. Abb. 1). Abbildung 2(a) und (b) zeigen die Koordinationspolyeder um Na und Ta. In Tabelle 7 sind Abstandsund Koordinationsverhältnisse nach Röntgen- und Neutronenbeugungsdaten zusammengestellt. Das verzerrte N-Oktaeder um Ta ist in c-Richtung gestaucht, dasjenige um Na ist stark gestreckt. Wie NaTaN₂ kristallisieren eine Reihe von Oxiden, Sulfiden und Seleniden der Zusammensetzung ABX₂ in diesem Strukturtyp [13], bei dem das c/a-Achsverhältnis von Substanz zu Substanz stark variiert; bei NaTaN₂ liegt mit c/a = 5,41 ein sehr hoher

TABELLE 6 Auswertung von Röntgenpulverdiagrammen (Cu K α_1 , α -Quarz) von KTaN $_2$ und RbTaN $_2$ ($hkl_k\equiv$ pseudokubische; $hkl_0\equiv$ orthorhombische Indizierung)

		$2 heta_{ m gem}$	$d_{ m gem}$	$d_{ m ber}$	I_{gesch}	I _{ber} a	$2\theta_{ m gem}$	$d_{ m gem}$	$d_{ m ber}$	I_{gesch}	I _{ber} a
111	$ \begin{cases} 0 & 2 & 2 \\ 1 & 0 & 2 \end{cases} $		4,8203	4,825 3 4,82 3 9	50	34,3 34,2	17,960	4,9347	4,9313 4,9315	25	${11,4} \\ {11,3}$
	004	21,366	4,1551	4,1492	3	0,0	_	-	4,2540	_	0,0
	12 1	21,841	4,0658	4,0653	5	0,6	_	_	4,1499	_	0,6
	123	26,651	3,3419	3,3416	3	1,1	26,003	3,4237	3,4160	3	1,2
	11 4	27,271	3,2673	3,2678	8	1,4	26,727	3,3326	3,3447	3	1,6
220	$\{ \begin{array}{ccc} (0 & 4 & 0) \\ 2 & 0 & 0 \end{array} \}$	30 094	2,9670	2,9655 2,9642	30	21,6 19,5	29,383	3,0371	3,0257 3,025 9	30	$\{21,4\\19,4$
	(12 4	30,300	2,9473	2,9493	100	79,6	29,677	3,0077	3,0169	100	80,7
	2 1 1	31,380	2,8482	2,8336	3	2,2	30,671	2,9124	2,8928	8	1,6
	125	34,475	2,5993	2,6025	6	1,3	33,549	2,6689	2,6635	8	1,2
	$\begin{bmatrix} 1 & 4 & 2 \\ 2 & 2 & 2 \end{bmatrix}$	35,520	2,5252	2,5263 2,5257	15	7,8 6,7	34,732	2,5806	2,5790 2,5791	15	2,0 1,7
311	$\begin{bmatrix} 0 & 2 & 6 \\ 1 & 0 & 6 \end{bmatrix}$	235 82H	2,5047	2,5069 2,5067	25	3,4	34,891	2,5692	2,5680 2,5680	15	0,7 0,8 0,8
	104 4		_	2,4127	_	0,2	→	-	2,4656	_	0,1
2 2 2	20 4	_	_	2,4120		0,2	_		2,4657	_	0,2
	2 1 4	38,050	2,3629	2,3636	8	0,1	37,243	2,4122	2,4161	8	0,1
	24 0	43,211	2,0919	2,0965	30	12,4	42,183	2,1404	2,1396	25	12,6
400	00 8	43,564	2,0757	2,0746	20	7,6	42,351	2,1323	2,1270	25	8,0
	$\begin{pmatrix} 0 & 6 & 2 \\ 3 & 0 & 2 \end{pmatrix}$	47 261	1,9216	1,9232 1,9224	10	2,9 2,1	46,182	1,9640	1,9627 1,9629	8	1,0 0,6
331	$\begin{bmatrix} 1 & 4 & 6 \\ 2 & 2 & 6 \end{bmatrix}$	47 521	1,9117	1,9144 1,9141	20	4,7 4,9	46,419	1,9545	1,9579 1,9579	10	{ 1,5 1,5
	25 1	_	-	1,8408		1,4			1,8786		1,1
	313	-	_	1,8385	_	0,9	48,390	1,8794	1,8776	8	0,6
	$\begin{array}{ccc} 1 & 6 & 3 \\ 3 & 2 & 3 \end{array}$	51,373	1,7771	1,7762 1,7756	8	$\substack{1,4\\0,2}$	50,287	1,8129	1,8133 1,8132	10	1,6 0,2
	314	51,710	1,7663	1,7643	8	1,7	50,589	1,8027	1,8024	8	2,0
	331	51,991	1,757.4	1,7577	8	0,2	_	_	1,7942		0,2
422	$ \begin{cases} 1 & 6 & 4 \\ 3 & 2 & 4 \end{cases} $: ออ.ออด	1,7102	1,7090 1,7085	30	$16,7 \ 14,2$	52,294	1,7479	1,7452 $1,7453$	30	16,5 14,2
722	$\begin{pmatrix} 0 & 4 & 8 \\ 2 & 0 & 8 \end{pmatrix}$	53,818 53,948	1,7019 1,6981	1,6999 1,6997	30 8	9,0 8,7	52,631	1,7375	1,7401 1,7401	25	9,2 8,9
	$\begin{array}{ccc} 3 & 3 & 3 \\ 2 & 1 & 8 \end{array}$	54,527	1,6815	1,6838 1,6825	3	1,6 1,0	53,220	1,7196	1,7194 1,7224	6	1,3 1 ,1
	165	56,291	1,6329	1,6329	8	1,4	54,984	1,6686	1,6680	3	1,5
	334	56,536	1,6264	1,6263	6	1,2	55,306	1,6596	1,6611	3	1,5
	(26 2)	<u> </u>	_	1,6134	_	(2,5	_	_	1,6467		0,8
	34 2	[–	-	1,6131	_	2,4	_	_	1,6467	_	0,8
3 3 3 5 1 1		57,236	1,6082	1,6084 1,6080	15	1,8	55,847	1,6448	1,6438 1,6438	3	0,6
		/ n/ nnn	1,5997	1,5983 1,5982	15	{ 1,6 { 1,9	56,078	1,6386	1,6381 1,6381	3	0,5
	3 3 5	59,195	1,5595	1,5602	3	1,2	_		1,5941	_	1,0
	(08 0	62,583	1,4830	1,4828	6	{ 2,3	61,103	1,5153	1,5129	8	∫ 2,3
			±.±000	4 4001	v	1 1 5	32,230	_,0 _0	1 5 1 20	_	1,5
4 4 0	$\begin{cases} 40 & 0 \\ 24 & 8 \end{cases}$	63,031	1,4735	1,4821 1,4746	30	(1,5 10,9	61,410	1,5085	1,5130 1,5084	15	11,0

(Fortsetzung)

TABELLE 6 (Fortsetzung)

$h k l_k$	h k	l_{o}	$KTaN_2$					RbTaN ₂	2			
			$2\theta_{ m gem}$	$d_{ m gem}$	$d_{ m ber}$	I_{gesch}	I _{ber} a	$2 heta_{ m gem}$	$d_{ m gem}$	$d_{ m ber}$	I _{gesch}	Iber a
	18	1	65,018	1,4332	1,4331	3	0,7		_	1,4623	_	0,2
	35	4	65,437	1,4251	1,4259	5	1,4	63,827	1,4571	1,4561	8	1,5
4	(18	2	65,796	1,4181	1,4173	3	1,7		_	1,4463	_	0,6
	42	2	_	-	1,4168		1,0		_	1,4464	_	0,3
-01	26	6)	00.050	1 4100	1,4137	8	2,2			1,4444		0,7
531 ≺	3 4	6	66,056	1,4132	1,4135	ō	11,8			1,4444	_	0,6
	$\begin{bmatrix} 1 & 4 \\ 2 & 2 \end{bmatrix}$	- >	66,425	1,4062	1,4069 1,4068	15	$\{2,5\ 2,1$	64,647	1,4405	1,4405 1,4405	1	{ 8,1 } 0,6
	43	1)	66,712	1,3826	1,3830 1,3817	3	$\{0,6\ 0,2$	66,137	1,4117	1,4117 1,4129	1	0,3
620	28 44	0)	70,992	1,3266	1,3261 1,3256	6	12,9 2,4	69,502	1,3513	1,3532 1,3532	25	$\left\{\begin{array}{c} 2,9\\2,3\end{array}\right.$
İ	36	4	71,151	1,3240	1,3245	8	6,1			1,3524		6,1
	28	1	71,291	1,3217	1,3219	15	1,2	-	_	1,3489	_	1,3
620	12	12	71,782	1,3139	1,3135	15	10,7	69,750	1,3471	1,3460	6	110,6

 $KTaN_2$, a = 5,929(1) Å, b = 11,862(3) Å, c = 16,597(4) Å; $RbTaN_2$, a = 6,052(2) Å, b = 12,103(5) Å, c = 17,016(7) Å.

Wert vor, der deutlich durch die Streckung der N-Oktaeder um Na bedingt ist. Der Abstand d(Na-N) = 2,51 Å entspricht ebenso wie d(Ta-N) = 2,11 Å den Erwartungswerten nach dem Ionenradienkonzept [14].

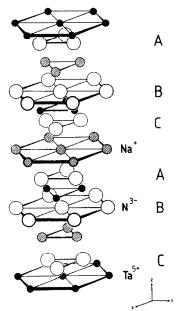


Abb. 1. Atomanordnung in $NaTaN_2 - \alpha - NaFeO_2$ -typ.

 $^{^{\}rm a}I$ wurde nach Strukturdaten von KGaO₂ [11] berechnet (für KTaN₂ als "KTaO₂" und für RbTaN₂ als "RbTaO₂").

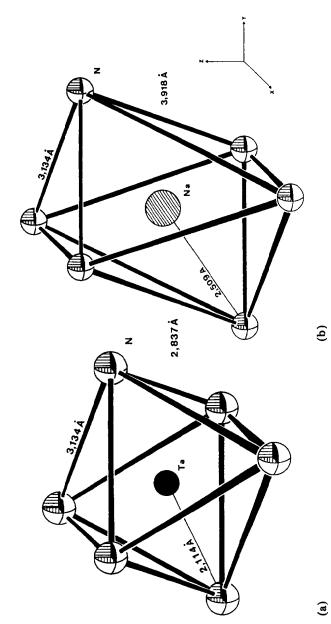


Abb. 2. N-Koordinationspolyeder um Na und Ta für NaTaN2 mit Abständen.

TABELLE 7	
Abstands- und Koordinationsverhältnisse in NaTaN ₂ (Abstände in Å)	

	Röntgen	Neutronen	
Ta-6 N	2,12(4)	2,114(1)	
Na-6 N	2,50(5)	2,509(2)	
Ta-6 Na	3,35(0)	3,359(0)	
N-3 N	2,86(7)	2,837(4)	
6 N	3,14(0)	3,134(0)	
3 N	3,89(8)	3,918(4)	
Rest ≽	4,24(5)	4,227(3)	

Beim Übergang von der Na- zur K-Verbindung tritt ein neuer Strukturtyp auf, der hochsymmetrisch im $CsTaN_2$ ermittelt wurde. In den K-, Rbund Cs-Tantalnitriden bilden N und Ta eine dreidimensional verknüpfte Tetraedergerüststruktur vom β -Cristobalittyp [15]. Die Alkalimetallionen besetzen darin alle Lücken der Koordinationszahl 12 durch N. Bisher haben wir nur die Struktur von $CsTaN_2$ eindeutig erfasst. Daher soll sie vorerst als Grundlage der weiteren Diskussion dienen. In Abb. 3 ist das bisher beschriebene Modell der Atomanordnung gezeichnet. Erst die Neutronenbeugungsdaten von $CsTaN_2$ mit N als starkem Streuer weisen auf ein Problem für diese Verbindung hin, dass auch bei SiO_2 in der β -Cristobalitform seit langem bekannt ist [15, 16]: die N-Lagen sind wie O im SiO_2 statistisch fehlgeordnet. In Abb. 4 ist die Lagefehlordnung dargestellt. Um die Verbindungslinie Ta-Ta benachbarter Tantalatome befinden sich 6/6 N-Atome fehlgeordnet. Der Radius des umschreibenden Kreises beträgt 0,34 Å. Mit dieser Lagefehl-

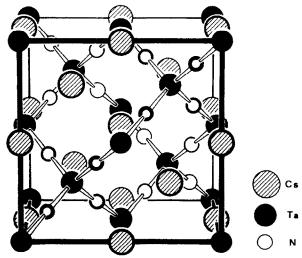


Abb. 3. Idealisierte Atomanordnung in $CsTaN_2$ dargestellt als aufgefüllter β -Cristobalittyp.

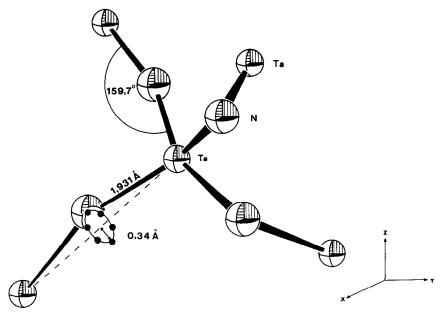


Abb. 4. Lagefehlordnung von N in CsTa N_2 nach Neutronenbeugungsdaten.

TABELLE 8 Abstands- und Koordinationsverhältnisse in $CsTaN_2$ (Abstände in Å; vgl. Tabellen 4 und 5)

	Röntgenbe	eugung	Neutronenb	eugung	
		$mit \ x = 0$	295 K	16 K	10 K
Ta-4 Ta	3,799		3,801	3,778	3,786
$4 N \equiv 24/6$	1,92(5)	$4 \times 1,899$	1,931(5)	1,930(4)	1,931(6)
4 Cs	3,799	•	3,801	3,778	3,786
Cs-4 Cs	3,799		3,801	3,778	3,786
$4 N \equiv 24/6 N$	3,40(5)	$12 \times 3,637$	3,355(5)	3,286(4)	3,303(5)
$4 N \equiv 24/6 N$	3,65(5)	ŕ	3,655(5)	3,639(4)	3,645(5)
$4 N \equiv 24/6 N$	3,89(5)		3,933(5)	3,961(2)	3,957(5)
N-1/3 N = 2/6 N	2,81(7)		2,764(7)	2,689(5)	2,707(8)
$1/3 N \equiv 2/6 N$	2,83(6)		2,785(6)	2.718(4)	2,734(7)
$2/3 N \equiv 4/6 N$	2,97(9)		2,949(9)	2,907(6)	2,918(9)
$2/3 N \equiv 4/6 N$	3,00(8)		2,987(7)	2,961(6)	2,968(9)
$1/3 N \equiv 2/6 N$	3,10(9)	$6 \times 3,102$	3,104(9)	3,085(7)	3,091(9)
$2/3 N \equiv 4/6 N$	3,13(7)	•	3,141(7)	3,135(5)	3,138(8)
$2/3 N \equiv 4/6 N$	3,14(8)		3,159(7)	3,160(6)	3,162(8)
$1/3 N \equiv 2/6 N$	3,16(9)		3,177(9)	3,185(7)	3,185(9)
$2/3 N \equiv 4/6 N$	3,26(9)		3,287(6)	3,301(7)	3,300(9)
$2/3 N \equiv 4/6 N$	3,28(9)		3,322(8)	3,348(7)	3,344(9)
1/3 N = 2/6 N	3,39(7)		3,443(7)	3,481(5)	3,475(8)
$1/3 N \equiv 2/6 N$	3,40(8)		3,460(7)	3,504(6)	3,496(8)
Rest >	4,88(9)		4,788(8)	4,657(7)	4,689(9)
Ta-N-Ta	163(4)°	180°	159,7(4)°	156,3(3)°	157,1(4)°

ordnung ändert sich der Bindungswinkel Ta-N-Ta von 180° auf 159.7° und die Bindungslänge d(Ta-N) von 1.899 Å auf 1.931 Å. In Tabelle 8 sind für CsTaN_2 aus Röntgen- und Neutronenbeugungsdaten ermittelte Abstandsund Koordinationsverhältnisse — auch temperaturabhängig — aufgelistet. Die Bindungslänge d(Ta-N) ändert sich zwischen 10 K und Raumtemperatur wenig, der Bindungswinkel $\Delta \text{Ta-N-Ta}$ wird deutlich um ca. 3° grösser. Die thermische Ausdehnung ist in den Abständen d(Cs-N) und d(N-N) bemerkbar. Weiterhin sind in Tabelle 8 auch für ein nicht fehlgeordnetes Modell Werte eingetragen. Sie erlauben einen direkten Vergleich mit den durch Neutronenbeugung ermittelten Daten.

KaTaN₂ und RbTaN₂ kristallisieren nach Röntgenpulverdaten in einer rhombisch verzerrten Struktur mit einer dem CsTaN₂ sehr ähnlichen Atomanordnung. Die Gitterkonstanten von K- und RbTaN₂ lassen sich mit den Beziehungen $a_{\rm R}.(2)^{1/2} \approx a_{\rm K}, \ b_{\rm R}/(2)^{1/2} \approx a_{\rm K}, \ c_{\rm R}/2 \approx a_{\rm K}$ direkt mit derjenigen $(a_{\rm k})$ von CsTaN₂ vergleichen. In Abb. 5 ist dieser Zusammenhang dargestellt.

Offenbar tritt in der K- und Rb-Verbindung eine stärkere Verkippung der TaN_{4/2}-Tetraeder gegeneinander ein, die zum einen die Koordination der kleineren Alkalimetallkationen begünstigt zum anderen zu einer klaren Fernordnung der Tetraeder zueinander führt. Die Fehlordnung von N ist dann sicherlich nicht mehr vorhanden. Wir bemühen uns, diese Annahme durch Röntgenbeugung an Einkristallen von KTaN₂ bzw. RbTaN₂ zu klären. Die unterschiedliche thermische und chemische Stabilität beim Übergang von NaTaN₂ zu KTaN₂ bis CsTaN₂ korreliert mit dem Strukturwechsel. In NaTaN₂

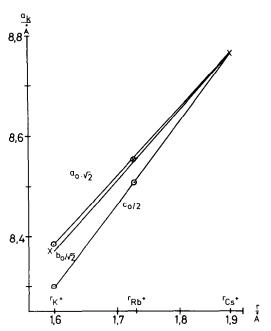


Abb. 5. Vergleich der Gitterkonstanten von $KTaN_2$ und $RbTaN_2$ (vgl. Text) mit derjenigen von $CsTaN_2$.

besetzen beide Metallatome Oktaederlücken einer verzerrt kubisch dichten Nitridionenpackung. Die Koordination von Ta durch N verringert sich auf vier und die der Alkalimetalle ist deutlich ≥ 6 in KaTaN₂ bis CsTaN₂. NaTaN₂ besitzt auch die grösste Dichte innerhalb dieser Verbindungsreihe, die Abnahme von der Na- zur K-Verbindung (8,00 g cm⁻³ und 5,65 g cm⁻³) ist erheblich.

Dank

Wir danken dem Landesamt für Forschung NRW für die Unterstützung dieser Arbeit mit Sachbeihilfen ebenso wie der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie. Herrn Dr. W. Schäfer, Universität Bonn, Mineralogisches Institut und den Herren Dr. P. Müller sowie Dr. J. Huster, RWTH Aachen, Institut für Anorganische Chemie gilt unser Dank für die Durchführung der Neutronenbeugungsmessungen in der KFA Jülich bzw. im Risø National Laboratory in Roskilde sowie der Messung am Stadi/2 PL.

Literatur

- 1 E. Zintl und G. Brauer, Z. Elektrochem., 41 (1935) 102.
- 2 U. von Alpen, J. Solid State Chem., 29 (1979) 379.
- 3 R. Juza, W. Gieren und J. Haug, Z. anorg. allg. Chem., 300 (1959) 61.
- 4 J. Guyader, P. L'Haridon, Y. Laurent, R. Jacquet und G. Raoult, J. Solid State Chem., 54 (1984) 251.
- 5 H. Jacobs und D. Schmidt, Curr. Topics Mater. Sci., 8 (1982) 381.
- 6 J. Strähle, Z. anorg. allg. Chem., 402 (1973) 47.
- 7 International Tables for X-ray Crystallography, Vol. II, p. 122, Kynoch, Birmingham, 1968.
- 8 H. M. Rietveld, J. Appl. Crystallogr., 2 (1969) 65.
- 9 Structure Determination Package, Enraf-Nonius, Delft.
- 10 S. Goldsztaub, Bull. Soc. Fr. Minér., 58 (1935) 6.
- 11 E. Vielhaber und R. Hoppe, Z. anorg. allg. Chem., 369 (1969) 14.
- 12 E. von Pinkowski, Dissertation, Universität Dortmund, 1988.
- 13 R. W. G. Wyckoff, Crystal Structures, Vol. II, Interscience, 1964, p. 291.
- 14 R. D. Shannon, Acta Crystallogr. Sect. A, 32 (1976) 751.
- 15 D. R. Peacor, Z. Kristallogr., 138 (1973) 274.
- 16 A. F. Wright und A. J. Leadbetter, Philos. Mag., 31 (1975) 1391.