TOTAL SYNTHESIS OF ERYTHRONOLIDE B. 2.

SKELETON ASSEMBLY IN $(C_5 - C_9) + (C_3 - C_4) + (C_1 - C_2) + (C_{11} - C_{13})$ SEQUENCE¹.

A.F.Sviridov, M.S.Ermolenko, D.V.Yashunsky, V.S.Borodkin, N.K.Kochetkov*

N.D.Zelinsky Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow 117334, USSR

Abstract. Erythronolide B has been synthesized starting from levoglucosan.

In the preceding paper we reported the synthesis of erythronolide B (<u>1</u>) from levoglucosan². The synthesis proceeded through assembly of C_1-C_6 and C_9-C_{13} segments and led to the seco-acid precursor <u>2</u> which was successfully transformed into erythronolide B (<u>1</u>). We now report an alternative synthesis of erythronolide B (<u>1</u>) through the same intermediate <u>2</u> using a carbohydrate-derived C_5-C_9 and $C_{11}-C_{13}$ segments.

The common subtarget of the syntheses - seco-acid precursor $\underline{2}$ - can be obtained (Scheme 1) by aldol addition of $C_1 - C_{10}$ ketone $\underline{3}$ to $C_{11} - C_{13}$ aldehyde $\underline{4}$ (cf.³). To produce the former, two consecutive crotylstannane additions to $C_5 - C_9$ aldehyde $\underline{5}$ were proposed. Both $C_5 - C_9$ ($\underline{5}$) and $C_{11} - C_{13}$ ($\underline{4}$) segments can be obtained from levoglucosan $\underline{8}$.

The C_1-C_{10} segment of erythronolide B was synthesized as follows (Scheme 2). Compound 9 was prepared from levoglucosan 8 in nine steps (36% overall yield) according to the described method⁴. Benzylation of 9 followed by selective MPM removal led to the alcohol <u>10</u> which was deoxygenated via its xanthate ester. The bicyclic derivative <u>7</u> so produced was transformed into the bromide <u>11</u> which was subjected to reductive elimination to afford the unsaturated aldehyde <u>12</u>⁵.

a.NaH, BnBr/DMF; b.DDQ/CH₂Cl₂-H₂O; c.NaH,CS₂,MeI/THF then Bu₃SnH,AIBN/PhCH₃, Δ ; d.HC1/MeOH; e.CBr₄-Ph₃P/Py,60°; f.Zn/i-PrOH-H₂O(14:1), Δ ; g.LiAlH₄/Et₂O; h.TBSCl, ImH/DMF; i.O₃/CH₂Cl₂-Py; j.Bu₃SnCH₂CH=CHCH₃,MgBr₂/CH₂Cl₂,20°; k.NaH,MPMCl/DMF; l.Bu₃SnCH₂CH=CHCH₃,BF₃·Et₂O/CH₂Cl₂,-78°; m.DDQ,MS 3A°/CH₂Cl₂; n.DMP-Me₂CO,TsOH; o.(COCl)₂-DMSO,Et₃N/CH₂Cl₂; p.EtMgBr.

The aldehyde <u>12</u> was converted into the C_5-C_9 aldehyde $\underline{5}^5$ which, on MgBr₂---mediated crotylstannane addition, produces two homoallylic alcohols in moderate (4:1) selectivity⁶. The major product (<u>13</u>)⁵, stereochemically corresponding to the C_4-C_9 segment of erythronolide B, was transformed into the aldehyde <u>14</u> which was subjected again to a crotylstannane addition reaction, but in the presence of BF₃·Et₂O. The major homoallylic alcohol obtained proved to be the "Cram" product (<u>15</u>)⁷, and the C_1-C_{10} ketone <u>3</u>⁵ derived from it posesses, at least, five chiral centres with the required configurations. At this stage of the synthesis the configuration at C_2 remained unknown and was proved later.

The $C_{11}-C_{13}$ segment of erythronolide B (<u>4</u>) was obtained from the bicyclic acetal <u>6</u>⁸ as shown at Scheme 3.

a.EtsH,HCl; b.Ra-Ni/EtOH; c.Me₂CO,CuSO₄; d.TBSOTf,Et₃N/CH₂Cl₂; e.HS(CH₂)SH, BF₃·Et₂O/CH₂Cl₂,-78°; f.NaIO₄/THF-H₂O; g.LiN(SiMe₃)₂/THF,-78°; h.LiAlH(OBu-t)₃; i.MPCH(OMe)₂,TSOH; j.DDQ/CH₂Cl₂-H₂O; k.Bu₄NF/THF.

De-O-isopropylidenation of $\underline{17}$ was achieved by mercaptolysis and the resulting glycol was split by NaIO₄ to afford the $C_{11}-C_{13}$ aldehyde $\underline{4}^5$ which was immediately introduced into reaction with the Li-enolate of C_1-C_{10} ketone $\underline{3}$. The aldols formed were separated by chromatography and the main diastereomer of the expected³ structure $\underline{18}^5$ was reduced with LiAlH(OBu-t)₃ to yield the desired 9,11--<u>anti</u>-glycol $\underline{19}^9$ in 12:1 selectivity. Further transformation of $\underline{19}$ into $\underline{2}$ was carried out as follows. The p-methoxybenzylidene acetal $\underline{20}^5$, obtained as a single isomer at the acetal centre, on treatment with DDQ in wet CH₂Cl₂ undergoes rapid debenzylation to produce $\underline{21}^5$. The high rate of the reaction in conjunction with unusual selectivity might arise through an intramolecular hydride transfer from benzyl to the sterically hindered dioxenium ion, generated from p-methoxybenzylidene acetal, as a result of conformational "rigidity" in 3,5:9,11-bis(cyclic)acetal of (9S)-dihydro seco-acid derivatives¹⁰.

Desilylation of <u>21</u> provides the seco-acid precursor 2^5 which proved to be identical with that prepared by the independent route². Transformation of <u>2</u> into erythronolide B (<u>1</u>) has been described in the preceding paper².

Adaptation of this strategy to erythronolide A synthesis as well as syntheses of erythromycins A and B are in progress now.

References and notes.

- 1. Presented at the VIth ICOS, Moscow, USSR, August 10-15, 1986; A-188, p.86.
- 2. Preceding paper in this issue.
- S.Masamune, M.Hirama, S.Mori, S.A.Ali, D.S.Garvey, <u>J.Amer.Chem.Soc.</u>, <u>103</u>, 1568 (1981).
- 4. N.K.Kochetkov, A.F.Sviridov, M.S.Ermolenko, D.V.Yashunsky, <u>Tetr.Lett.</u>, <u>25</u>, 1605 (1984).
- 5. All new compounds were fully characterized by $[\alpha]_D$, ¹H-NMR, elemental analyses and (if crystalline) mp. Specific rotation (measured at $22^{\pm}2^{\circ}$, c 1.0, CHCl₃) and representative ¹H-NMR (250 MHz, δ scale, J(Hz), CDCl₃) data for selected compounds are the following:
- 6. The both isomers represent the products of chelate control as was shown by NMR (including NOE) investigations of the corresponding β -methylglycosides <u>22</u> which were obtained from chromatographically separated homoallylic alcohols in 4 steps (1.TBSOTF,Et₃N/CH₂Cl₂; 2.AcOH-H₂O-THF (3:1:5),50°; 3.(COCl)₂-DMSO,Et₃N/CH₂Cl₂; 4.HCl/MeOH.). At this stage of the synthesis the absolute configuration at C₄ in <u>13</u> remained unknown and was proved later⁷.
- 7. By NMR (including NOE) investigation of cyclic acetal <u>16</u>.
- Available from levoglucosan <u>8</u> in five steps and 40% overall yield; A.F.Sviridov, G.E.Berdimbetova, N.K.Kochetkov, Izv.Akad.Nauk SSSR, Ser.Khim., <u>1982</u>, 2572.
- 9. By NMR (including NOE) investigation of cyclic acetal <u>20</u> and the corresponding acetal derived from 9,11-<u>syn</u>-isomer of <u>20</u>.
- 10. This reaction was first observed with analogously protected (95)-dihydroerythronolide A; unpublished results from this laboratory.

(Received in UK 23 June 1987)