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Summary: Heating solutions of acetal complexes {CpRu-
(CH3CN)2[η1-P-2-(Ph2P)[CH(OR)2]C6H4]}OTf (3; R )
Me, Et) at 60-95 °C results in loss of one CH3CN ligand
and the alcohol ROH, with concomitant formation of
carbene complexes CpRu(CH3CN)[η2-C,P-2-(Ph2P)[C(OR)]-
C6H4]}OTf (4) in high yield. Kinetic and reactivity
studies suggest that the rate-determining step of the
conversion of 3 to 4 is oxidative addition of an acetal
C-O bond to the ruthenium center, which occurs under
neutral, mild conditions.

Metal-carbene complexes are exceedingly versatile
stoichiometric reagents in organic synthesis1 and highly
active catalysts for alkene metathesis.2 A common
preparation of late transition metal carbene complexes
relies on a combination of strongly basic, nucleophilic,
and electrophilic reagents with a metal carbonyl1,3 or
on the action of metal complexes on reactive groups such
as cyclopropenes2,4 or diazo compounds,5 both of which
are of limited accessibility. Because acetals are stable
compounds,6 easily made from widely available carbonyl
compounds, we examined a new reaction for aldehyde
acetals, summarized in eq 1. This metal-induced net

R-elimination of an alcohol is a new route to an alkoxy-
carbene complex.7 The closest precedents might be net
R-elimination of H2 from ethers (double C-H acti-
vation)8a-d or net elimination of Me2NH from an aminal
on an osmium cluster,8e in mechanistically uncharac-
terized processes. Here, we report that eq 1 has been
realized in what has the characteristics of a C-O bond
activation process, leading to ruthenium carbene com-

plexes 4. In preliminary studies, the carbene complex
4a shows intriguing ability to isomerize allylic alcohols
to saturated aldehydes.
On the basis of the known stability of CpRu alkoxy-

carbene complexes to boiling alcohols,9 the conversion
of 3 to 4 (Scheme 1) was chosen for initial study.
Benzaldehyde acetals with a 2-diphenylphosphino sub-
stituent (1) were synthesized by adapting known meth-
ods.10 The ruthenium component 2 was prepared in
82% yield by a modification of the published method for
the PF6- salt.11 Addition of 1 to 2 in CDCl3 resulted in
the immediate formation of 3,12,13 which could be
isolated in g90% yield but was usually used directly in
subsequent reactions. Heating a solution of 3 in CDCl3
at 60 °C for 3 h (3a) or 1 d (3b) led to carbene complex
4,14 CH3CN, and ROH, all in g90% yield as determined
by NMR integration; 4 was isolated as air-stable red
solid in g78% yield after chromatography over SiO2

using CH2Cl2-CH3CN mixtures and recrystallization
from CH2Cl2-Et2O. The formation of a carbene ligand
in 4 was indicated by a downfield doublet in 13C NMR
spectra:15 for 4a and 4b, δ 300.25 (d, J ) 7.6 Hz) and
297.34 ppm (d, J ) 7.6 Hz), respectively. Other spectral
changes accompanying the transformation of 3a to 4a
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included downfield shifts of the signals for the Cp
protons (from δ 4.36 to 4.89) and -OCH3 protons (from
3.00 to 4.84 ppm). The presence of a CH3CN ligand was
shown by a three-proton singlet at δ 1.84 ppm in the
1H NMR spectrum, by weak IR absorption at 2284
cm-1,16 and by correct combustion analysis for C, H, N,
and S. Homolog 4b exhibited similar spectral features,
with diastereotopic methylene protons on the ethoxy
group.14

Three mechanisms for the formation of 4 were con-
sidered (Scheme 2). All begin with coordination of an
oxygen to the metal, giving 5, although direct conversion
of 3 to 6, 7, or 8 is also imaginable. Mechanism a would
give 6 by oxidative addition of the methine C-H bond
to the ruthenium center17 and 4 by subsequent elimina-
tion of ROH.18 Alternatively, in mechanism b, oxidative
addition of the C-O bond19 would produce 7, which
would lose ROH to form the metal-carbene bond. In
the final mechanism c, the metal in 5would act as Lewis
acid, facilitating formation of a carbocation (8), which

would transfer a proton20 to the ruthenium-bound
alkoxide to give 4 and ROH.
A series of kinetic and other experiments were

performed to shed light on the mechanism of the new
transformation. Solutions of 3a in CDCl321 were moni-
tored by 1H NMR spectroscopy. At 60 °C, resonances
for species other than 3a, 4a, CH3CN, or CH3OH were
not detected. Because 2 undergoes CH3CN exchange
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Scheme 1

Scheme 2

Figure 1. Rate plot for reaction of 3 generated from 1 and
2 in CDCl3, 60 °C. The concentration of 3 is represented
by signal integration (1H NMR) in arbitrary units. For each
data point, a single transient was acquired with a pulse
width of 90°, acquisition time <3 s, with d1> 5T1. Reactions
were followed for at least 3 half-lives. For 3a, k ) 1.9933
((0.0763) × 10-2 min-1 (R 2 ) 0.998); for 3a-d1, k ) 1.4654
((0.1148) × 10-2 min-1 (R 2 ) 0.992); for 3b, k ) 2.3583
((0.1311) × 10-3 min-1 (R 2 ) 0.995). All deviations are
expressed at the 99% confidence level.
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responsible for the formation of 4, a substantial primary
isotope effect might be observed if conversion of 5 to 6
was rate-determining. However, the isotopomer of 3a
featuring a deuterium at the acetal methine site (3a-d)
was used to determine kH/kD ) 1.36(16). This observed
isotope effect is at the lower end of the range of reported
values for primary isotope effects in C-H activation
processes;24 alternatively, the isotope effect is at the
upper end of values reported for secondary isotope
effects in acid-catalyzed acetal hydrolysis, considered to
be a model for mechanism c, 5 f 8.25 A value for the
secondary isotope effect in C-O bond activation (mech-
anism b) could not be found for comparison.
To probe the role of charge dispersal during the

reaction course, 3a was heated in CD3NO2, a polar yet
nondonating solvent.26 The resulting profound reduc-
tion in reaction rate required elevating the temperature
by 35 °C to achieve a rate similar to that seen in CDCl3.
Although this result must be interpreted with caution,
it seems inconsistent with the localization of charge
presumed to accompany conversion of 5 to 8. Further-
more, the ratio of observed rate constants k3a/k3b ) 8.5-
(8) shows a pronounced steric effect on conversion to 4,
which seems too large to be accommodated by a rate-
determining C-H bond activation.27 Taken together,
the available evidence seems most consistent with

approach of the ruthenium center to the C-O bond as
the key step (mechanism b, 5 f 7), which would
represent a new reaction for acetals.
To our knowledge, 4 is the first CpRu-carbene

complex with a potentially labile CH3CN ligand.9,15
Preliminary studies of the reactivity of 4a show that
the acetonitrile ligand is displaced by PMe3 (CDCl3,
room temperature, 3 h; 91% yield).28 Surprisingly,
however, cationic complex 4a was inert to either O-
demethylation29 or ligand substitution by NaI in CD3-
NO2 (60 °C, 3 d). Exchange of the carbene OCH3
substituent for OCD3 by heating with CD3OD (ca. 1
equiv in CDCl3 or as solvent, 60 °C, 12 h) did not occur,
but 4a catalyzes the isomerization of prop-2-en-1-ol to
propanal at room temperature, a reaction which we are
investigating further.
This work establishes the first transformation of an

acetal to an alkoxycarbene complex. Future and ongo-
ing explorations involve the extension of this chemistry
to other aldehyde derivatives and the applications of the
resulting chiral carbene complexes.
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