
This article was downloaded by: [University of Auckland Library] On: 08 October 2014, At: 13:25 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



# Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/gpss20</u>

## SYNTHESIS OF SOME NEW FUSED AND POLYFUSED QUINOXALINES

H. Abdel-Ghany <sup>a</sup>

<sup>a</sup> Department of Chemistry, Faculty of Science , South Valley University , Sohage, Egypt Published online: 27 Oct 2006.

To cite this article: H. Abdel-Ghany (2000) SYNTHESIS OF SOME NEW FUSED AND POLYFUSED QUINOXALINES, Phosphorus, Sulfur, and Silicon and the Related Elements, 164:1, 259-268, DOI: <u>10.1080/10426500008045251</u>

To link to this article: http://dx.doi.org/10.1080/10426500008045251

### PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions Phosphorus, Sulfur and Silicon, 2000, Vol. 164, pp. 259-268 Reprints available directly from the publisher Photocopying permitted by license only © 2000 OPA (Overseas Publishers Association) Amsterdam N.V. Published under license by the Gordon and Breach Science Publishers imprint. Printed in Malaysia

## SYNTHESIS OF SOME NEW FUSED AND POLYFUSED QUINOXALINES

#### H. ABDEL-GHANY\*

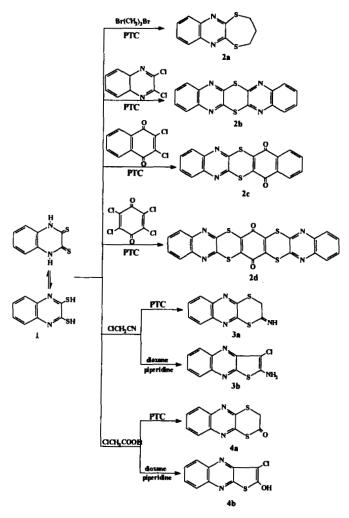
Department of Chemistry, Faculty of Science, South Valley University, Sohage, Egypt

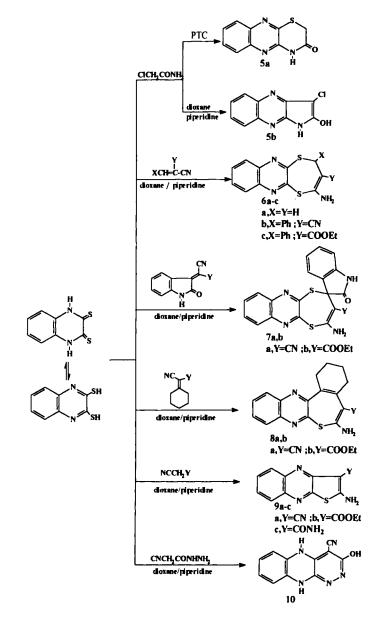
(Received March 23, 1999; In final form April 20, 2000)

2,3-Dimercaptoquinoxaline 1 was allowed to react with some dihalo compounds and chloroanil using PTC technique to afford the corresponding polyfused quinoxalines 2a-d. The reaction of compound 1 with different monohalo compounds under the same PTC conditions or in refluxing ethanol in presence of piperidine catalyst gave (1,4)dithiino-, thieno-, (1,4)thiazino-, and pyrroloquinoxalines 3a-5b. The addition of compound 1 to  $\alpha,\beta$ -unsaturated nitriles was investigated to give the corresponding (1,5)dithiapinoquinoxalines 6a-7b and thiapinoquinoxalines 8a,b. The treatment of compound 1 with active nitriles furnished the corresponding thienoquinoxalines 9a-c and pyridazinoquinoxaline 10.

*Keywords:* quinoxalines; Phase-Transfer Catalysis; (1,4)dithiinoquinoxaline; thienoquinoxaline; (1,4)thiazinoquinoxaline; pyrroloquinoxaline; (1,5)dithiapinoquinoxaline

#### INTRODUCTION


The fungicidal, bactericidal and insecticidal activity<sup>1-3</sup> of some quinoxalines motivated us to synthesis some new fused and polyfused quinoxalines through the reaction of 2,3-dimercaptoquinoxaline with active halo compounds, active nitriles and the addition to  $\alpha$ , $\beta$ -unsaturated nitriles.


#### **RESULTS AND DISCUSSION**

In connection to our previous work<sup>4-7</sup> the application of PTC technique in the heterocyclic synthesis, 2,3-dimercaptoquinoxaline (quinoxa-

<sup>\*</sup> Corresponding Author.

lin-2,3-dithione) 1 was allowed to react with 1,3-dibromopropane, 2,3-dichloroquinoxaline<sup>8</sup>, 2,3-dichloro-1,4-naphthoquinone in 1:1 molar ratio or with chloroanil in 2:1 molar ratio under solid-liquid phase-transfer catalysis (PTC) conditions [dioxan/k<sub>2</sub>CO<sub>3</sub>/tetrabutylammonium bromide (TBAB)] to give the corresponding polyfused quinoxalines **2a-d**, respectively (cf. Scheme 1, Table I). The mechanism cycle was explained in our previous work<sup>7</sup>.





SCHEME 1 (continued)

| 014                                                                 |                                     |            | TABLE I A                                          | nalytic | a of the prepared compo | f the prepared compounds |       |                                                |                                                                                                 |
|---------------------------------------------------------------------|-------------------------------------|------------|----------------------------------------------------|---------|-------------------------|--------------------------|-------|------------------------------------------------|-------------------------------------------------------------------------------------------------|
| aëtion<br>dHions<br>mUn)/                                           | M.P. <sup>a</sup><br>(cryst. solv.) | Yield<br>% | Mol. formula<br>(Mol. wt.)                         |         |                         | cal Da<br>Fouma          |       | IR (Kbr) <sup>c</sup><br>∨ (Cm <sup>-1</sup> ) | <sup>1</sup> H-NMR (DMSO-d <sub>6</sub> ) <sup>d</sup> δ (ppm)                                  |
|                                                                     |                                     |            |                                                    | C       | H                       | N                        | S     |                                                |                                                                                                 |
| ues                                                                 | 277.79                              | 85         | $C_{11}H_{10}N_2S_2$                               | 56.38   | 4.30                    | 11.95                    | 27.36 |                                                | 8.10-7.35 (m, 4H, arm.); 2.65-2 25 (t, 2CH <sub>2</sub> ); 1.20-0.85 (m, 2H, CH <sub>2</sub> ). |
| 13:                                                                 | (aq.dioxan)                         |            | (234.34)                                           | 56.21   | 4.43                    | 11.78                    | 27.51 |                                                |                                                                                                 |
| <i>1</i> 65                                                         | > 300                               | 90         | $C_{18}H_8N_2O_2S_4$                               | 62.05   | 2.31                    | 8.04                     | 18.41 | 1683 (CO).                                     | 8.15–6.90 (m, 8H, arm.).                                                                        |
| ary                                                                 | (aq. DMSO)                          |            | (348.40)                                           | 62.31   | 2.19                    | 8.28                     | 18.20 |                                                |                                                                                                 |
| <u>A</u>                                                            | > 300                               | 83         | $\mathrm{C_{20}H_8N_4O_2S_4}$                      | 51.71   | 1.74                    | 12.06                    | 27.61 | 1678 (CO).                                     | 8.15-7.25 (m, 8H, arm.).                                                                        |
| pun                                                                 | (aq. DMSO)                          |            | (464.57)                                           | 51.50   | 1.91                    | 12.19                    | 27.43 |                                                |                                                                                                 |
| <i>ឝ</i> ўо                                                         | 199-200                             | 72         | $C_{10}H_7N_3S_2$                                  | 51.48   | 3.02                    | 18.01                    | 27.49 | 3238,(NH).                                     | 10.85 (s, 1H, NH); 8.15–7.25 (m, 4H, a<br>4.10 (s, 2H, CH <sub>2</sub> ).                       |
| Au                                                                  | (chloroform)                        |            | (233.32)                                           | 51.72   | 3.19                    | 17.82                    | 27.29 |                                                |                                                                                                 |
| nef.                                                                | 174–75                              | 68         | C <sub>10</sub> H <sub>6</sub> Cl N <sub>3</sub> S | 50.96   | 2.57                    | 17.83                    | 13.60 | 3256,3148 (NH <sub>2</sub> ).                  | 8.10-7.30 (m, 4H, arm.); 4.65 (s, 2H, N                                                         |
| iversit                                                             | (chloroform/<br>pet. ether)         |            | (235.70)                                           | 50.72   | 2.78                    | 17.64                    | 13.39 |                                                |                                                                                                 |
| କ୍ତି                                                                | 651–52                              | 76         | $C_{10}H_7N_2OS_2$                                 | 51.04   | 2.10                    | 11.90                    | 27.25 | 3320(NH); 1701 (CO).                           | 8.20-7.35 (m, 4H, arm.); 4.25 (s, 2H C                                                          |
| sd by                                                               | (chloroform<br>/benzene)            |            | (235.31)                                           | 51.28   | 2.29                    | 11.71                    | 27.51 |                                                |                                                                                                 |
| ind.                                                                | 164-65                              | 74         | C <sub>10</sub> H <sub>6</sub> CION <sub>2</sub> S | 50.53   | 2.54                    | 11.79                    | 13.49 | 3342 (NH); 3420 (OH).                          | 11.15 (s, 1H, NH); 8.15–7.25 (m, 4H, a                                                          |
| Downlonded by [Gniversitynt] Aucとand Lybrary] හි 13:2 හි 08 වී<br>ර | (ethanol)                           |            | (237.69)                                           | 50.30   | 2.35                    | 11.98                    | 13.21 |                                                | 3.85 (s, 1H, OH).                                                                               |

| tition<br>titions<br>u(D)/<br>u(D)/<br>p.C)                       | M.P. <sup>a</sup><br>(cryst. solv.) | Yield<br>% | Mol. formula<br>(Mol. wt.)                                                   | Analytical Data <sup>b</sup><br>Cal./Foumd |      |       |       | IR (Kbr) <sup>c</sup>                    | <sup>I</sup> H-NMR (DMSO-d <sub>6</sub> ) <sup>d</sup> δ(ppm)                                   |
|-------------------------------------------------------------------|-------------------------------------|------------|------------------------------------------------------------------------------|--------------------------------------------|------|-------|-------|------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                                                   |                                     |            |                                                                              | C                                          | H    | N     | S     | $\vee (Cm^{-1})$                         |                                                                                                 |
| y] at 13.25 0830                                                  | 261-62                              | 69         | C <sub>10</sub> H <sub>7</sub> N <sub>3</sub> OS                             | 55.29                                      | 3.25 | 19.34 | 14.76 | 3235 (NH).                               | 9.95 (s, 1H, NH), 8.10-7.35 (m, 4H, aro                                                         |
|                                                                   | (methanol)                          |            | (217.25)                                                                     | 55.51                                      | 3.49 | 19.13 | 14.57 |                                          | 4.25 (s, 2H, CH <sub>2</sub> ).                                                                 |
|                                                                   |                                     | 69         | C <sub>10</sub> H <sub>6</sub> CIN <sub>3</sub> O                            | 54.69                                      | 2.75 | 19.13 |       | 3420 (OH), 3132 (NH).                    | 10.75 (s, 1H, NH); 8.15–7.35 (m, 4H, ar<br>3.45 (s, 1H, OH).                                    |
|                                                                   |                                     |            | (219.63)                                                                     | 54.48                                      | 2.54 | 19.27 |       |                                          |                                                                                                 |
| r <del>et</del>                                                   | 230-32                              | 78         | $C_{11}H_9N_3S_2$                                                            | 53.42                                      | 3.67 | 16.99 | 25.93 | 3252, 3149 (NH <sub>2</sub> ).           | 8.10-7.25 (m, 4H, arom.); 5.45 (s, 2H, N                                                        |
| d Li                                                              | (methanol)                          |            | (247.34)                                                                     | 53.58                                      | 3.49 | 16.71 | 25.78 |                                          | 3.75–3.35 (t, 1H, CH); 3.15–2.95 (d, 2H                                                         |
| Auckena                                                           | 15456                               | 73         | $C_{18}H_{12}N_4S_2$                                                         | 62.05                                      | 3.47 | 16.08 | 18.40 | 3279, 3175 (NH <sub>2</sub> ):           | 8.15-6.75 (m, 9H, arom.); 5.60 (s. 2H. N                                                        |
|                                                                   | (chloroform<br>/benzene)            |            | (348.45)                                                                     | 62.29                                      | 3.31 | 16.25 | 18.58 | 2210 (CN).                               | 3.85–3.65 (d. 1H, CH).                                                                          |
| ref                                                               | 130-32                              | 68         | C <sub>20</sub> H <sub>17</sub> N <sub>3</sub> O <sub>2</sub> S <sub>2</sub> | 60.74                                      | 4.33 | 10.62 | 16.21 | 3343, 3251 (NH <sub>2</sub> );           | 8.30-6.95 (m, 9H, arom.); 5.75 (s, 2H. N                                                        |
| iversit                                                           | (chloroform/<br>benzene)            |            | (395.51)                                                                     | 60.51                                      | 4.57 | 10.81 | 16.09 | 1710 (CO).                               | 4.35–4.10 (q, 2H, CH <sub>2</sub> ); 1.10-0.85 (t, 3H<br>CH <sub>3</sub> ).                     |
| Downloaded by [Eniversite of Auck and Lilfary] at 13.25 082 crabe | 215-17                              | 63         | $C_{19}H_{11}N_5OS_2$                                                        | 58.60                                      | 2.85 | 17.98 | 16.47 |                                          | 11.35 (s. 1H, NH); 8.10-6.95 (m, 8H, ar                                                         |
|                                                                   | (aq. dioxan)                        |            | (389.46)                                                                     | 58.39                                      | 2.67 | 18.14 | 16.66 | NH <sub>2</sub> ); 2198 (CN); 1723 (CO). | 6.15 (s, 2H, NH <sub>2</sub> ).                                                                 |
|                                                                   | 185-87                              | 65         |                                                                              |                                            |      |       |       | NUL 1. 1703 1716                         | 11.25 (s, 1H, NH); 8.20–6.95 (m, 8H. ar<br>5.85 (s, 2H, NH <sub>2</sub> ); 4.25–3.95 (q, 2H, CH |
|                                                                   | (aq. dioxan)                        |            | (436.51)                                                                     | 57.99                                      | 3.52 | 12.98 | 14.52 | (CO).                                    | 1.15–0.95 (t, 3H, CH <sub>3</sub> ).                                                            |

|                                     |                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M.P. <sup>a</sup><br>(cryst. solv.) | Yield                                                                                                                                        | •                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{IR (Kbr)^c}{\vee (Cm^{-1})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>1</sup> H-NMR (DMSO-d <sub>6</sub> ) <sup>d</sup> δ (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     | 70                                                                                                                                           | (MOI. WI.)                                                                                                                                            | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H                                                                     | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 150-51                              | 76                                                                                                                                           | C <sub>17</sub> H <sub>14</sub> N <sub>4</sub> S                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3312, 3210 (NH <sub>2</sub> );<br>2220 (CN).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.05–7.25 (m, 4H, arom.); 5.65 (s, 2H.<br>1.35–1.05 (t, 4H, 2CH <sub>2</sub> ); 0.95-0.40 (m,<br>2CH <sub>2</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (ethanol)                           |                                                                                                                                              | (306.39)                                                                                                                                              | 66.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.45                                                                  | 18.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 204 <del>-6</del>                   | 71                                                                                                                                           |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.10-7.30 (m, 4H, arom.); 5.75 (s, 2H, 4.30-3.95 (q, 2H, CH <sub>2</sub> ); 1.35-0.45 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (ethanol)                           |                                                                                                                                              | (353.45)                                                                                                                                              | 64.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.61                                                                  | 11.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (CO).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $4.50-5.55$ (q, 211, CH <sub>2</sub> ), $1.55-0.45$ (m, $4CH_2+CH_3$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 222–23                              | 69                                                                                                                                           | C <sub>11</sub> H <sub>6</sub> N <sub>4</sub> S                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.15-7.25 (m, 4H, arom.); 6.10 (s, 2H, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (methanol)                          |                                                                                                                                              | (226.26)                                                                                                                                              | 58.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.81                                                                  | 24.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 142-43                              | 64                                                                                                                                           |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.15–7.25 (m, 4H, arom.); 5.45 (s, 2H, 1<br>4.25–3.95 (q, 2H, CH <sub>2</sub> ); 1.15-0.85 (t, 3<br>CH <sub>3</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (methanol)                          |                                                                                                                                              | (273.32)                                                                                                                                              | 57.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.24                                                                  | 15.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11. <b>9</b> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 118-20                              | 61                                                                                                                                           | C <sub>11</sub> H <sub>8</sub> N <sub>4</sub> OS                                                                                                      | 54.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.30                                                                  | 22. <del>9</del> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3340, 3238, 3129<br>(2NH <sub>2</sub> ); 1685 (CO).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.25–7.35 (m, 4H, arom.); 5.25 (s, 2H.)<br>3.15 (s. 2H, NH <sub>2</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (methanol)                          |                                                                                                                                              | (244.28)                                                                                                                                              | 54.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.12                                                                  | 22.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 205-7                               | 59                                                                                                                                           | C <sub>11</sub> H <sub>7</sub> N <sub>4</sub> O                                                                                                       | 62.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.34                                                                  | 26.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.35 (s. 1H, NH); 10.85 (s, 1H, NH); 8<br>7.35 (m. 4H, arom.); 2.95 (s, 1H, OH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (ethanol)                           |                                                                                                                                              | (211.20)                                                                                                                                              | 62.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.18                                                                  | 26.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2N <b>N</b> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.55 (m. 4H, atom.), 2.55 (s, 1H, OH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -                                   | (cryst. solv.)<br>150–51<br>(ethanol)<br>204–6<br>(ethanol)<br>222–23<br>(methanol)<br>142–43<br>(methanol)<br>118–20<br>(methanol)<br>205–7 | (cryst. solv.) %   150-51 76   (ethanol) 71   204-6 71   (ethanol) 222-23   69   (methanol) 4   142-43 64   (methanol) 61   118-20 61   (methanol) 59 | (cryst. solv.) % (Mol. wt.)   150-51 76 C <sub>17</sub> H <sub>14</sub> N <sub>4</sub> S   (ethanol) (306.39)   204-6 71 C <sub>19</sub> H <sub>19</sub> N <sub>3</sub> O <sub>2</sub> S   (ethanol) (353.45)   222-23 69 C <sub>11</sub> H <sub>6</sub> N <sub>4</sub> S   (methanol) (226.26)   142-43 64 C <sub>13</sub> H <sub>11</sub> N <sub>3</sub> O <sub>2</sub> S   (methanol) (273.32)   118-20 61 C <sub>11</sub> H <sub>8</sub> N <sub>4</sub> OS   (methanol) (244.28)   205-7 59 C <sub>11</sub> H <sub>7</sub> N <sub>4</sub> O | M.P.ª<br>(cryst. solv.)     Yield<br>%     Mol. formula<br>(Mol. wt.) | M.P. <sup>a</sup><br>(cryst. solv.)     Yield<br>%     Mol. formula<br>(Mol. wt.)     Cal.//       150-51     76 $C_{17}H_{14}N_{4}S$ 66.64     4.61       (ethanol)     (306.39)     66.83     4.45       204-6     71 $C_{19}H_{19}N_3O_2S$ 64.57     5.42       (ethanol)     (353.45)     64.79     5.61       222-23     69 $C_{11}H_6N_4S$ 58.39     2.67       (methanol)     (226.26)     58.58     2.81       142-43     64 $C_{13}H_{11}N_3O_2S$ 57.13     4.06       (methanol)     (273.32)     57.32     4.24       118-20     61 $C_{11}H_8N_4OS$ 54.09     3.30       (methanol)     (244.28)     54.29     3.12       205-7     59 $C_{11}H_7N_4O$ 62.56     3.34 | M.P. <sup>a</sup><br>(cryst. solv.)     Yield<br>%     Mol. formula<br>(Mol. wt.)     Cal./Founda<br>C     Cal./Founda<br>Mol.       150-51     76 $C_{17}H_{14}N_{4}S$ 66.64     4.61     18.29       (ethanol)     (306.39)     66.83     4.45     18.40       204-6     71 $C_{19}H_{19}N_{3}O_{2}S$ 64.57     5.42     11.89       (ethanol)     (353.45)     64.79     5.61     11.72       222-23     69 $C_{11}H_{6}N_{4}S$ 58.39     2.67     2.4.76       (methanol)     (226.26)     58.58     2.81     24.51       142-43     64 $C_{13}H_{11}N_{3}O_{2}S$ 57.32     4.06     15.37       (methanol)     (273.32)     57.32     3.00     22.94       118-20     61 $C_{11}H_{8}N_{4}OS$ 54.09     3.02     22.94       (methanol)     (244.28)     54.29     3.12     22.75       205-7     59 $C_{11}H_{7}N_{4}O$ 62.56     3.42     5.53 | $\begin{array}{c cryst. solv. } \end{picture} \begin{tabular}{ cryst. solv. } \end{picture} $ | $\begin{array}{c cryst. solv.} \begin{array}{c cryst. solv.} \begin{array}{c cryst. solv.} \end{array} \end{array} \begin{array}{c cryst. solv.} \end{array} \end{array} \begin{array}{c cryst. solv.} \end{array} \begin{array}{c cryst. solv.} \end{array} \end{array} \end{array} \begin{array}{c cryst. solv.} \end{array} \end{array} \begin{array}{c cryst. solv.} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c cryst. solv.} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c cryst. solv.} \end{array} \end{array}$ |

ctèd.

#### QUINOXALINES

The reaction of compound 1 with chloroacetonitrile, ethyl chloroacetate or chloroacetamide proceeds differently according to the reaction conditions. When the reaction was carried out under PTC conditions it gave the corresponding (1,4) dithiinoquinoxalines 3a, 4a or (1,4) thiazinoquinoxaline derivative 5a. But, when the reaction was carried out in refluxing dioxan in the presence of piperidine as catalyst it yielded the corresponding thienoquinoxalines 3b, 4b or pyrroloquinoxaline derivative 5b In case of PTC conditions the postulated reaction mechanism was assumed to follow alkylation to one of the SH groups followed by nucleophilic attack of the second SH group to the cyano group or the carbonyl ester with elimination of ethanol to give **3a** or **4a**. Compound **5a** was formed via alkylation of the SH group followed by condensation between the thiono group and the amidic NH<sub>2</sub>group. While in the case when using piperidine as catalyst, formation of compounds 3b and 4b may be rationalized in terms of a condensation between the thiono group and the active methylene group followed by nucleophilic attack of the SH group to the cyano group or the carbonyl ester group. Compound 5b was formed through the condensation of the two thiono groups with the active methylene group and the amidic NH<sub>2</sub> group (cf. Scheme 1, Table I).

The addition of compound 1 to  $\alpha$ ,  $\beta$ -unsaturated nitriles was investigated where compound 1 was treated with acrylonitrile, benzylidenemalononibenzylidenecyanoacetate, 2-(2-oxo-2,3-dihytrile. ethyl dro-1H-indolid-3-ene)malononitrile. ethvl 2-(2-oxo-2.3-dihvdro-1Hindolid-3-ene)cyanoacetate. cyclohexylidenemalononitrile or ethvl cyclohexylidenecyanoacetate to give the cyclized compounds 6a-c - 8a.b. It may be suggested that the formation of compounds **6a-c** and **7a,b** should proceed through the addition of the SH group of compound 1 to the C-C double bond followed by cycloaddition of the second SH group to the cyano group. While the formation of compounds 8a,b was assumed to proceed via firstly a condensation between the thiono group of compound 1 and the active methylene group in the 2-position of cyclohexylidenemalononitrile or ethyl cyclohexylidenecyanoacetate followed by addition of the SH group of compound 1 to the cyano group.

Treatment of compound 1 with malononitrile, ethyl cyanoacetate, cyanoacetamide or cyanoacetohydrazide in refluxing dioxan in the presence of piperidine as catalyst afforded thienoquinoxalines **9a-c** or pyridazinoquinoxaline **10**. The reaction pathway was suggested to proceed through the condensation between the thiono group of compound 1 and the active methylene group followed by intramolecular cyclization via addition of the SH group to the cyano group to form compounds **9a-c**. While the formation of compound **10** was assumed to proceed through a condensation of the two thiono groups of compound **1** with the active methylene group and the amino group of the hydrazide compound.

#### **EXPERIMENTAL**

#### Reactions of compound 1 with di and polyhalo compounds

#### Synthesis of compounds 2a-d General procedure

To a mixture of anhydrous potassium carbonate (4g), dry dioxan (50 ml), compound 1 (0.01 mol) and a catalytic amount of TBAB was added an equimolar amount of 1,3-dibromopropane, 2,3-dichloroquinoxaline or 2,3-dichloro-1,4-naphthoquinone or (0.005 mol) of chloroanil. The reaction mixtures were stirred over different periods of time at different temperatures (cf. Table I) till the completion of the reaction (TLC). The reaction mixtures were filtered, the filtrate was evaporated in *vacuo*. The solid residue was washed with water and crystallized from aq. dioxan where compound **2a** was obtained. The residual solid potassium carbonate was dissolved in distilled water (50 ml). The separated solid was collected by filtration and crystallized from the suitable solvent where compounds **2b-d** were obtained (cf. Table I, Scheme 1).

#### Reactions of compound 1 with monohalo compounds

#### A) Under PTC conditions

#### Synthesis of compounds 3a, 4a and 5a General procedure:

A mixture of 4g anhydrous potassium carbonate, compound 1 (0.01 mol), dry dioxan (50 ml) and catalytic amount of TBAB was treated with 0.01 mole of chloroacetonitrile, ethyl chloroacetate or chloroacetamide. The reaction mixtures were stirred for a period of time 2–4 h at different temperatures. The reaction mixture was filtered, the filtrate was

#### QUINOXALINES

evaporated in *vacuo*. The residue was treated with pet. ether/CHCl<sub>3</sub> to give a solid which was crystallized from chloroform when compound **3a** was obtained. The solid potassium carbonate was dissolved in distilled water (50 ml) and acidified with HCl and the separated solid was collected by filtration and crystallized from the proper solvent where compounds **4a** and **5a** were obtained (cf. Scheme 1, Table I).

#### B) In presence of piperedine catalyst

#### Synthesis of compounds 3b, 4b and 5b General procedure

A solution of an equimolar amount (0.01 mol) of compound 1 and chloroacetonitrile, ethyl chloroacetate or chloroacetamide in dioxan (50 ml) was treated with catalytic amount of piperedine and refluxed for 6 h. The solvent was evaporated in *vacuo* and the residue treated with pet. ether/CHCl<sub>3</sub> and the separated solid was crystallized from a suitable solvent (cf. Scheme 1Table I).

#### Addition of compound 1 to $\alpha$ , $\beta$ -unsaturated nitriles

#### Synthesis of compounds 6a-c – 8a,b General procedure

An equimolar amount (0.01 mol) of compound 1 and acrylonitrile, or the proper ylidenemalononitrile or ethyl ylidenecyanoacetate were dissolved in dioxan (50 ml), treated with two drops of pipredine and refluxed for different periods of time. The reaction mixtures were evaporated in *vacuo* and the residues were treated with pet. ether/CHCl<sub>3</sub> and the separated solids were collected by filtration and crystallized from a suitable solvent (cf. Scheme 1, Table I).

#### **Reactions of compound 1 with active nitriles**

#### Synthesis of compounds 9a-c and 10 General procedure

To a solution of compound 1 (0.01 mol) in dioxan (50 ml) was added an equimolar amount of malononitrile, ethyl cyanoacetate, cyanoacetamide

or cyanoacetohydrazide. The reaction mixture was treated with few drops of piperedine and refluxed over different periods of time. The solvent was evaporated in *vacuo* and the residue was treated with pet. ether/CHCl<sub>3</sub>. The separated solid was collected by filtration and crystallized from a proper solvent (cf Scheme 1, Table I).

#### References

- 1. Lane, D. W. G.; Newbold, G. T.; Brit. Pat. 1 041 011; C.A. 60, 15891 (1964).
- Fisher, G. H.; Moreno, H. R.; Oits, J. E.; Schultz, H. P.; Oits, J. M., and Schultz H. P., J. Med. Chim., 18, 746 (1975).
- 3. Davis, M.L., U.S. Pat. 3, 852, 443; C.A. 83, 48193f (1975).
- El-Shafei, A. K., El-Sayed, A. M.; Sultan, A. A. and Abdel-Ghany, H.; Gazz. Chem. Ital., 120, 197 (1990).
- El-Shafei, A. K.; Abdel-Ghany, H.; Sultan, A. A. and El-Saghier, A. M. M.; Phosphorus, Sulfur and Silicon, 73, 15 (1992).
- Abdel-Ghany, H.; El-Sayed, A. M. and El-Shafei, A. K., Synth. Comm., 25, 1119 (1995).
- 7. Abdel-Ghany, H.; Phosphorus, Sulfur and Silicon, 122, 173 (1997).
- 8. Wojciechowski, L., Rocz. Chem., 43, 1205 (1969).

Downloaded by [University of Auckland Library] at 13:25 08 October 2014