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In 1992 Feizi and co-workers reported that an equimolar mixture of sulfated Le x and 
Le a tetrasaccharides derived from an ovarian cystoadenoma glycoprotein were strongly 
bound to E- and L-selectins [1]. In a recent communication, they concluded that sulfated 
Le a tetrasaccharide [2] and pentasaccharide [3] emerge as the most potent E-selectin 
ligands so far studied [4]. Those observations prompted us to synthesize sulfated Le x 
and Le a pentaosyl ceramide. 

In our preceding paper [5], we described the total synthesis of sulfated Le x pentaosyl 
ceramide. In connection with our project on the synthesis of glycosphingolipids, we 
herein deal with a stereocontrolled, facile, first total synthesis of sulfated Le a pentaosyl 
ceramide 1 for further chemical and biological scrutiny. The overall strategy is depicted 
in Scheme 1. Retrosynthetic analysis of a suitable route to 1 (Scheme 1) led us to design 
a putative glycosyl donor 2 that could be coupled with ceramide derivative 3 [6]. Donor 
2 was expected to be constructed from synthons derived from D-galactose, 2-amino-2- 
deoxy-D-glucose, L-fucose, and lactose (compounds 4 -6  [7] and 7 [8], respectively, all of 
which are prepared from readily available compounds). 

Glycosylation of 4 (1.5 equiv) with $ in dichloromethane in the presence of MeOTf 
at room temperature afforded an 89% yield of the desired /3-(1 ~ 3)-linked compound 8 
{[a] D -20 .9  ° (c 1.0); Rf 0.38 (3:1 toluene-AcOEt)}, t The /3 configuration of 8 was 
assigned from the 1H NMR data that showed a signal for H-ld at 6H 4.547 (d, J = 8.5 

* Corresponding author. 
1 Optical rotations were determined for solutions in CHC13 at 25°C. NMR spectra were recorded with a 

JNM-GX 500 Fourier-transform instrument. The values of ~H are expressed in ppm downfield from the signal 
for internal Me4Si for solutions in CDC13 at 24°C, unless noted otherwise. Mass spectra were determined 
using electrospray-ionization (ESIMS) and fast-atom bombardment mass spectrometry (FABMS) techniques. 
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Scheme 1. 

Hz). We carried out the reductive ring opening of the benzylidene acetal in compound 8 
using some different conditions in THF as solvent {(a) BH 3 • NMe3/A1C13 [9a], (b) 
BH 3 • NMe3/BF 3 • OEt 2, (c) BH 3 • NMe3/TMSOTf, (d) NaBH3CN/etheral HC1 [9b]}. 
Among them, condition (c) was best performed, due to its high conversion yield and 
high regioselectivity; 9 {89%, [a ]  D -16 .9  ° (c 1.0); Rf 0.24 (3:1 toluene-AcOEt)}, 11 
{4%, [a ]  D -37.5  ° (c 0.60); R/  0.19 (3:1 toluene-AcOEt)}. The regiochemistry 
outcome of 9 and 11 were deduced by converting both compounds into their respective 
acetate 10 {[a] D - 11.3 ° (c 1.2); R/0 .27  (3 : 1 toluene-AcOEt)} and 12 which showed 
in the 1H NMR spectrum a deshielded signal for H-4c of 10 at 8 n 4.987 (t, J = 9.9 Hz), 
which was consistent with our previous data [5]. 

The crucial a-glycosylation of 9 with methyl thioglycoside 6 (2.0 equiv) in MeCN 
under the agency of MeOTf afforded a 76% yield of the desired o~-(1 ~ 4)-linked 
trisaccharide 13 {[ or] o -29.1 ° (c 1.0); R/ 0.45 (3:1 toluene-AcOEt)}. The successful 
introduction of the L-fucosyl residue was confirmed by the 1H NMR data for 13 that 
showed a signal for H-le at 8 .  5.159 (d, J = 4.0 Hz). Deallylation of 13 with (1) 
[Ir(COD)(PMePh2)2]PF 6 [10] (0.1 equiv) in THF and (2) 12 in aq THF afforded 
hemiacetal 14 in 97% yield. Compound 14 was converted to an a,fl mixture (a:[3 
1 : 3) of the glycosyl fluoride 15 [R/ 0.55 (1 : 1 toluene-AcOEt); 8 H 5.678 (dd, 0.75 H, 
J = 7.5, 54.0 Hz,  H-lcfl) ,  5.483 (dd, 0.25 H, J = 3.0, 54.0 Hz,  H-lcot)] in 99% yield 
with diethylaminosulfur trifluoride (DAST) [11] at -15°C. 
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Having prepared the trisaccharide donor 15, and having the glycosyl acceptor 7 in 
hand, the crucial glycosylation reaction was examined in the following manner. Glyco- 
sylation between 15 and 7 (1.3 equiv) under Mukaiyama conditions [12] [SnC12-AgOTf 
in 1 : 1 MeCN-EtCN at - 15°C] afforded the desired pentasaccharide 16 in 82% yield 
{[ tx ]D -35.4° (c 1.0); R/ 0.70 (1:1 hexane -AcOEt)}. The configuration of the newly 
introduced anomeric carbon C-lc was expected to be /3, due to the presence of the N-2 
phthaloyl group in the glycosyl donor, which favors the formation of the 1,2-trans 
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stereochemistry. Indeed, the 1H NMR spectral data showed the anomeric proton of H-lc 
as a doublet at 6 H 5.193 ( J  = 8.0 Hz), thus confirming the /3 configuration. 

Simultaneous cleavage of the phthaloyl and acetyl groups of 16 was achieved by 
treatment with hydrazine hydrate in refluxing EtOH [13], and the amino alcohol thus 
obtained was N-acetylated by Ac20 in MeOH to afford 17 in 87% yield {[ a ]o -46.8° 
(c 1.0); Rf 0.42 (1:6 toluene-AcOEt)}. Treatment of 17 with levulinic anhydride 
afforded O-3d-levulinoylated 18 in 54% yield {[a] o -26.3  ° (c 1.40); R/ 0.39 (1:3 
hexane-AcOEt)} along with O-2d, O-3d-dilevulinoylated 19 in 40% yield {[ a ]D --35'8° 
(C 1.27); R/  0.71 (1:3 hexane-AcOEt)}. The assignment of 18 was deduced by the 
transformation into its acetate 20, which showed in the 1H NMR spectrum a newly 
deshielded signal for H-4d at 6 n 5.415 (d, J = 4.0 Hz) and H-2d at ~H 5.022 (dd, 
J = 8.5, 10.5 Hz). Conversion of 20 into the completely acylated glycopentaose 21 was 
carried out in two steps in 78% overall yield as follows: (1) H 2 with 20% Pd(OH)2-C in 
4:1 MeOH-H20; (2) Ac20 and 4-(dimethylamino)pyridine (DMAP) in pyridine. 
Compound 21 was obtained as a 1 : 1 mixture of a :/3 anomers at C-la [Rf 0.47 (20 : 1 
CHCI3-MeOH); /~rt 6.295 (d, J =  4.0 Hz, H-lac~) and t~ n 5.704 (d, J =  8.5 Hz, 
H-la/3)]. 

Chemoselective cleavage of the anomeric acetate of 21 with piperidinium acetate [14] 
in THF at 50°C afforded an 85% yield of hemiacetal 22, along with recovered starting 
material 21 (10%). Compound 22 was converted to ot-trichloroacetimidate 23 in 90% 
yield {[a] o -3 .4  ° (c 1.32); Rf 0.51 (20:1 CHCI3-MeOH); 6H 6.510 (d, J = 4.0 Hz, 
H-la)} by CCI3CN and DBU in (CICH2) 2 [15]. The crucial coupling between 23 and 3 
was performed in freshly distilled CHC13 in the presence of BF 3 . OEt 2 to afford a 35% 
yield of /3-glycoside 24 {[a] o -20.0  ° (c 1.04); Rf 0.75 (20:1 CHC13-MeOH)}. The 
newly formed glycosidic linkage was shown to be/3 as revealed in the HOHAHA NMR 
spectrum of 24 [ ~H 4.415 (d, J = 7.5 Hz, H-la)]. 

Further conversion of 24 to the target glycolipid was executed as follows. Removal of 
the levulinoyl group of 24 by hydrazinium acetate in EtOH [16] at room temperature 
afforded 25 in 98% yield {[or] D -12.8  ° (c 0.51); Rf 0.67 (20:1 CHCI3-MeOH)}. 
Compound 25 was converted to O-3d-sulfated compound 26 {[ a ]o -14.9° (c 0.43)} in 
97% yield by agency of the SO 3 • NEt 3 complex in Me2NCHO at 90°C. The structure of 
26 was confirmed by the COSY and HOHAHA NMR experiments in CD3OD, which 
showed that sulfated group had indeed been introduced at O-3d as revealed by the 
downfield shift of the H-3d [t~ n 4.432 (dd, J = 3.5, 10.5 Hz)]. 

Deprotection of 26 with N NaOH in 1 : 1 MeOH-THF at 40°C for 4.5 h afforded 1 in 
34% yield (1.5 mg), after gel filtration through Sephadex LH-20 using 12:6:1 
CHCI3-MeOH-H20. 

Physicochemical data for 1: 1H NMR (49:1 MezSO-d6-D20, room temperature); ~n 
5.532 (dt, 1 H, J = 15.5, 8.5 Hz, H-5Cer), 5.345 (dd, 1 H, J -- 7.0, 15.5 Hz, H-4Cer), 
4.774 (d, 1 H, J = 3.5 Hz, H-le), 4.740 (d, 1 H, J = 8.0 Hz, H-lc), 4.602 (q, 1 H, 
J -- 7.5 Hz, H-5e), 4.418 (d, 1 H, J = 7.0 Hz, H-ld), 4.283 (d, 1 H, J = 7.0 Hz, H-lb), 
4.164 (d, 1 H, J = 8.0 Hz, H-la), 3.992 (brs, 1 H, H-4d), 1.810 (s, 3 H, NAc), 1.185 (d, 
3 H, J = 6 . 5  Hz, H-6e), 0.852 (t, 6 H, J = 7 . 0  Hz, 2 CH2Me); ESIMS: m / z  
(M + Na) + 1610, (M - Na)- 1564; FABMS (S-Gho matrix): m / z  (M + Na) + 1610, 
(TEA matrix): m / z  (M - Na)- 1564. 
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In summary, a stereocontrolled synthesis of the sulfated Le a pentaosyl ceramide 1 
was achieved for the first time using the glycopentaosyl trichloroacetimidate 23 as the 
key glycosyl donor. The biological properties of 1 are currently being studied. 
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