

Carbohydrate Research 270 (1995) C9-C13

CARBOHYDRATE RESEARCH

Preliminary communication

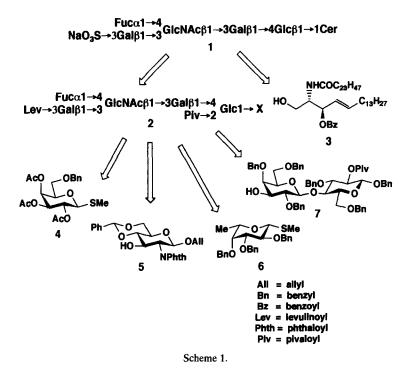
Total synthesis of sulfated Le^a pentaosyl ceramide

Akira Endo, Masami Iida, Shuji Fujita, Masaaki Numata, Mamoru Sugimoto, Shigeki Nunomura *

Tokyo Research Institute, NISSIN Food Products Co., Ltd., 1780 Kitano, Tokorozawa-shi, Saitama 359, Japan

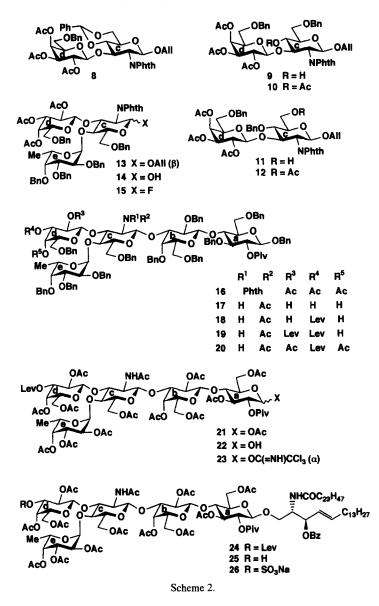
Received 4 January 1995; accepted 17 February 1995

Keywords: Ceramide; Pentaosyl, sulfated; Lewis A (Le^a) pentaosyl ceramide


In 1992 Feizi and co-workers reported that an equimolar mixture of sulfated Le^x and Le^a tetrasaccharides derived from an ovarian cystoadenoma glycoprotein were strongly bound to E- and L-selectins [1]. In a recent communication, they concluded that sulfated Le^a tetrasaccharide [2] and pentasaccharide [3] emerge as the most potent E-selectin ligands so far studied [4]. Those observations prompted us to synthesize sulfated Le^x and Le^a pentaosyl ceramide.

In our preceding paper [5], we described the total synthesis of sulfated Le^x pentaosyl ceramide. In connection with our project on the synthesis of glycosphingolipids, we herein deal with a stereocontrolled, facile, first total synthesis of sulfated Le^a pentaosyl ceramide 1 for further chemical and biological scrutiny. The overall strategy is depicted in Scheme 1. Retrosynthetic analysis of a suitable route to 1 (Scheme 1) led us to design a putative glycosyl donor 2 that could be coupled with ceramide derivative 3 [6]. Donor 2 was expected to be constructed from synthons derived from D-galactose, 2-amino-2-deoxy-D-glucose, L-fucose, and lactose (compounds 4-6 [7] and 7 [8], respectively, all of which are prepared from readily available compounds).

Glycosylation of 4 (1.5 equiv) with 5 in dichloromethane in the presence of MeOTf at room temperature afforded an 89% yield of the desired β -(1 \rightarrow 3)-linked compound 8 {[α]_D - 20.9° (*c* 1.0); R_f 0.38 (3:1 toluene-AcOEt)}.¹ The β configuration of 8 was assigned from the ¹H NMR data that showed a signal for H-1d at $\delta_{\rm H}$ 4.547 (d, J = 8.5


^{*} Corresponding author.

¹ Optical rotations were determined for solutions in CHCl₃ at 25°C. NMR spectra were recorded with a JNM-GX 500 Fourier-transform instrument. The values of $\delta_{\rm H}$ are expressed in ppm downfield from the signal for internal Me₄Si for solutions in CDCl₃ at 24°C, unless noted otherwise. Mass spectra were determined using electrospray-ionization (ESIMS) and fast-atom bombardment mass spectrometry (FABMS) techniques.

Hz). We carried out the reductive ring opening of the benzylidene acetal in compound **8** using some different conditions in THF as solvent {(a) BH₃ · NMe₃/AlCl₃ [9a], (b) BH₃ · NMe₃/BF₃ · OEt₂, (c) BH₃ · NMe₃/TMSOTf, (d) NaBH₃CN/etheral HCl [9b]}. Among them, condition (c) was best performed, due to its high conversion yield and high regioselectivity; **9** {89%, $[\alpha]_D - 16.9^\circ$ (c 1.0); R_f 0.24 (3:1 toluene-AcOEt)}, **11** {4%, $[\alpha]_D - 37.5^\circ$ (c 0.60); R_f 0.19 (3:1 toluene-AcOEt)}. The regiochemistry outcome of **9** and **11** were deduced by converting both compounds into their respective acetate **10** { $[\alpha]_D - 11.3^\circ$ (c 1.2); R_f 0.27 (3:1 toluene-AcOEt)} and **12** which showed in the ¹H NMR spectrum a deshielded signal for H-4c of **10** at δ_H 4.987 (t, J = 9.9 Hz), which was consistent with our previous data [5].

The crucial α -glycosylation of **9** with methyl thioglycoside **6** (2.0 equiv) in MeCN under the agency of MeOTf afforded a 76% yield of the desired α -(1 \rightarrow 4)-linked trisaccharide **13** {[α]_D - 29.1° (*c* 1.0); R_f 0.45 (3:1 toluene-AcOEt)}. The successful introduction of the L-fucosyl residue was confirmed by the ¹H NMR data for **13** that showed a signal for H-1e at δ_H 5.159 (d, J = 4.0 Hz). Deallylation of **13** with (1) [Ir(COD)(PMePh₂)₂]PF₆ [10] (0.1 equiv) in THF and (2) I₂ in aq THF afforded hemiacetal **14** in 97% yield. Compound **14** was converted to an α,β mixture ($\alpha:\beta$ 1:3) of the glycosyl fluoride **15** [R_f 0.55 (1:1 toluene-AcOEt); δ_H 5.678 (dd, 0.75 H, J = 7.5, 54.0 Hz, H-1c β), 5.483 (dd, 0.25 H, J = 3.0, 54.0 Hz, H-1c α)] in 99% yield with diethylaminosulfur trifluoride (DAST) [11] at -15° C.

Having prepared the trisaccharide donor 15, and having the glycosyl acceptor 7 in hand, the crucial glycosylation reaction was examined in the following manner. Glycosylation between 15 and 7 (1.3 equiv) under Mukaiyama conditions [12] [SnCl₂-AgOTf in 1:1 MeCN-EtCN at -15° C] afforded the desired pentasaccharide 16 in 82% yield {[α]_D - 35.4° (*c* 1.0); *R_f* 0.70 (1:1 hexane -AcOEt)}. The configuration of the newly introduced anomeric carbon C-1c was expected to be β , due to the presence of the *N*-2 phthaloyl group in the glycosyl donor, which favors the formation of the 1,2-trans

stereochemistry. Indeed, the ¹H NMR spectral data showed the anomeric proton of H-1c as a doublet at $\delta_{\rm H}$ 5.193 (J = 8.0 Hz), thus confirming the β configuration.

Simultaneous cleavage of the phthaloyl and acetyl groups of **16** was achieved by treatment with hydrazine hydrate in refluxing EtOH [13], and the amino alcohol thus obtained was *N*-acetylated by Ac₂O in MeOH to afford **17** in 87% yield {[α]_D - 46.8° (*c* 1.0); R_f 0.42 (1:6 toluene-AcOEt)}. Treatment of **17** with levulinic anhydride afforded O-3d-levulinoylated **18** in 54% yield {[α]_D - 26.3° (*c* 1.40); R_f 0.39 (1:3 hexane-AcOEt)} along with O-2d, O-3d-dilevulinoylated **19** in 40% yield {[α]_D - 35.8° (*c* 1.27); R_f 0.71 (1:3 hexane-AcOEt)}. The assignment of **18** was deduced by the transformation into its acetate **20**, which showed in the ¹H NMR spectrum a newly deshielded signal for H-4d at $\delta_{\rm H}$ 5.415 (d, J = 4.0 Hz) and H-2d at $\delta_{\rm H}$ 5.022 (dd, J = 8.5, 10.5 Hz). Conversion of **20** into the completely acylated glycopentaose **21** was carried out in two steps in 78% overall yield as follows: (1) H₂ with 20% Pd(OH)₂-C in 4:1 MeOH-H₂O; (2) Ac₂O and 4-(dimethylamino)pyridine (DMAP) in pyridine. Compound **21** was obtained as a 1:1 mixture of $\alpha : \beta$ anomers at C-1a [R_f 0.47 (20:1 CHCl₃-MeOH); $\delta_{\rm H}$ 6.295 (d, J = 4.0 Hz, H-1a α) and $\delta_{\rm H}$ 5.704 (d, J = 8.5 Hz, H-1a β)].

Chemoselective cleavage of the anomeric acetate of **21** with piperidinium acetate [14] in THF at 50°C afforded an 85% yield of hemiacetal **22**, along with recovered starting material **21** (10%). Compound **22** was converted to α -trichloroacetimidate **23** in 90% yield {[α]_D - 3.4° (c 1.32); R_f 0.51 (20:1 CHCl₃-MeOH); δ_H 6.510 (d, J = 4.0 Hz, H-1a)} by CCl₃CN and DBU in (ClCH₂)₂ [15]. The crucial coupling between **23** and **3** was performed in freshly distilled CHCl₃ in the presence of BF₃ · OEt₂ to afford a 35% yield of β -glycoside **24** {[α]_D - 20.0° (c 1.04); R_f 0.75 (20:1 CHCl₃-MeOH)}. The newly formed glycosidic linkage was shown to be β as revealed in the HOHAHA NMR spectrum of **24** [δ_H 4.415 (d, J = 7.5 Hz, H-1a)].

Further conversion of 24 to the target glycolipid was executed as follows. Removal of the levulinoyl group of 24 by hydrazinium acetate in EtOH [16] at room temperature afforded 25 in 98% yield {[α]_D - 12.8° (*c* 0.51); R_f 0.67 (20:1 CHCl₃-MeOH)}. Compound 25 was converted to O-3d-sulfated compound 26 {[α]_D - 14.9° (*c* 0.43)} in 97% yield by agency of the SO₃ · NEt₃ complex in Me₂NCHO at 90°C. The structure of 26 was confirmed by the COSY and HOHAHA NMR experiments in CD₃OD, which showed that sulfated group had indeed been introduced at O-3d as revealed by the downfield shift of the H-3d [δ_H 4.432 (dd, J = 3.5, 10.5 Hz)].

Deprotection of 26 with N NaOH in 1:1 MeOH-THF at 40°C for 4.5 h afforded 1 in 34% yield (1.5 mg), after gel filtration through Sephadex LH-20 using 12:6:1 CHCl₃-MeOH-H₂O.

Physicochemical data for 1: ¹H NMR (49:1 Me₂SO- d_6 -D₂O, room temperature); δ_H 5.532 (dt, 1 H, J = 15.5, 8.5 Hz, H-5Cer), 5.345 (dd, 1 H, J = 7.0, 15.5 Hz, H-4Cer), 4.774 (d, 1 H, J = 3.5 Hz, H-1e), 4.740 (d, 1 H, J = 8.0 Hz, H-1c), 4.602 (q, 1 H, J = 7.5 Hz, H-5e), 4.418 (d, 1 H, J = 7.0 Hz, H-1d), 4.283 (d, 1 H, J = 7.0 Hz, H-1b), 4.164 (d, 1 H, J = 8.0 Hz, H-1a), 3.992 (brs, 1 H, H-4d), 1.810 (s, 3 H, NAc), 1.185 (d, 3 H, J = 6.5 Hz, H-6e), 0.852 (t, 6 H, J = 7.0 Hz, 2 CH₂Me); ESIMS: m/z(M + Na)⁺ 1610, (M - Na)⁻ 1564; FABMS (S-Gho matrix): m/z (M + Na)⁺ 1610, (TEA matrix): m/z (M - Na)⁻ 1564. In summary, a stereocontrolled synthesis of the sulfated Le^a pentaosyl ceramide 1 was achieved for the first time using the glycopentaosyl trichloroacetimidate 23 as the key glycosyl donor. The biological properties of 1 are currently being studied.

Acknowledgments

We acknowledge Professor Tomoya Ogawa (RIKEN) for discussion and Mr. Tadashi Ii and Dr Yoko Ohashi (RIKEN) for recording the ESI and FAB mass spectra.

References

- P.J. Green, T. Tamatani, T. Watanabe, M. Miyasaka, A. Hasegawa, M. Kiso, C.-T. Yuen, M.S. Stoll, and T. Feizi, *Biochem. Biophys. Res. Commun.*, 188 (1992) 244-251.
- [2] K.C. Nicolaou, N.J. Bockovich, and D.R. Carcanague, J. Am. Chem. Soc., 115 (1993) 8843-8844.
- [3] A. Lubineau, J.L. Gallic, and R. Lemoine, J. Chem. Soc., Chem. Commun., (1993) 1419-1420.
- [4] C.-T. Yuen, K. Bezouska, J. O'Brien, M. Stoll, R. Lemoine, A. Lubineau, M. Kiso, A. Hasegawa, N.J. Bockovich, K.C. Nicolaou, and T. Feizi, J. Biol. Chem., 269 (1994) 1595-1598.
- [5] S. Nunomura, M. Iida, M. Numata, M. Sugimoto, and T. Ogawa, Carbohydr. Res., 263 (1994) C1-C6.
- [6] K. Koike, Y. Nakahara, and T. Ogawa, *Glycocoj J.*, 1 (1984) 107–109; K. Koike, M. Numata, M. Sugimoto, Y. Nakahara, and T. Ogawa, *Carbohydr. Res.*, 158 (1986) 113–123.
- [7] H. Lönn, Carbohydr. Res., 139 (1985) 105-113;115-121.
- [8] S. Sato, S. Nunomura, T. Nakano, Y. Ito, and T. Ogawa, Tetrahedron Lett., 29 (1988) 4097-4100.
- [9] (a) M. Ek, P.J. Garegg, H. Hultberg, and S. Oscarson, J. Carbohydr. Chem., 2 (1983) 305-311; (b) D.A. Horne and A. Jordan, Tetrahedron Lett., 16 (1978) 1357-1358.
- [10] L.M. Haines and E. Singleton, J. Chem. Soc., Dalton Trans., (1972) 1891–1896; J.J. Oltvoort, C.A.A. van Boeckel, J.H. De Koning, and J.H. van Boom, Synthesis, (1981) 305–308.
- [11] Wm. Rosenbrook, Jr., D.A. Riley, and P.A. Lartey, *Tetrahedron Lett.*, 26 (1985) 3–4; G.H. Posner and S.R. Haines, *Tetrahedron Lett.*, 26 (1985) 935–938.
- [12] T. Mukaiyama, Y. Murai, and S. Shoda, Chem. Lett., (1981) 431-432.
- [13] R.U. Lemieux, T. Takeda, and B.Y. Chung., ACS Symp. Ser., 39 (1976) 90-115.
- [14] T. Nakano, Y. Ito, and T. Ogawa, Tetrahedron Lett., 31 (1990) 1597-1600.
- [15] R.R. Schmidt and J. Michel, Angew. Chem., Int. Ed. Engl., 19 (1980) 731-732.
- [16] H.J. Koeners, J. Verhoeven, and J.H. van Boom, Rec. Trav. Chim. Pays-Bas, 100 (1981) 65-72.