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ABSTRACT 

Currently, objective measurements of textile fabrics refer to mechanical and physical 
properties measured by testing devices such as KES (Kawabata's evaluation system) and 
FAST (fabric assurance by simple testing). Textile scientists and engineers can easily obtain 
the values of these properties, but their use for developing models of fabric behavior is 
rare, although this is the simplest and most correct way to do it. Here, we develop an 
analytical model of the tensile force dependent on strain for a fabric sample, integrating 
the Kawabata parameters obtained by means of this test. The empirical stress-strain curves 
of some fabrics are presented and compared with curves obtained analytically. 

In improving the quality of fabrics, the mechanical 
property of force-extension is very significant. This prop- 
erty is evaluated in tensile experiments by means of 
several objective measurement technologies and partic- 
ularly by the most sophisticated of them, the KES (Kawa- 
bata's evaluation system). But a difficulty arises as to 
how to develop a theoretical model representing the 
behavior of fabrics during this test. 

Peirce [7] was the first to attack this difficulty. He 
developed a model based on the microstructure of fab- 
rics. His model supposed an initial structure of a plain 
weave fabric composed of uniform yams with circular 
cross sections, inextensible, incompressible, and per- 
fectly flexible. Although his model is incomplete, it 
constitutes the basis of research in this field. Several 
improved models were developed, in particular by Olofs- 
son [5,  61, Grosberg and Kedia [I], and Kawabata er 01. 
12, 31. 

Olofsson's model takes into account the fact that the 
cross section of the y"n is not necessarily circular and 
that the yams are in a complex state of deformation. His 
model is evaluated by considering yam geometry to be 
related to external forces and reaction forces in the fabric 
and by assuming a relation between the curve of the yam 
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in the fabric and its released state. He introduces the form 
factor as a new parameter. Grosberg and Kedia consid- 
ered two extreme cases of biaxial tension in fabrics: the 
state where the yarns are considered to be initially 
straight, and the fully relaxed state, in which the crimped 
shape has been set into the yams. In their model, they 
took account of the rigidity of yam bending to calculate 
fabric properties. In Kawabata's model [2], the structure 
of the fabric is identical to that of Peirce, except that he 
represented it in a different way to solve the problem of 
biaxial tension. Kawabata [3] used the same structure as 
for biaxial tension [2], with the aim of solving the prob- 
lem in the uniaxial case. He took into account the bend- 
ing of the transverse yarn, assuming the yam to be 
perfectly flexible in the direction where the load is ap- 
plied. He used an empirical approach to evaluate the 
behavior of uniaxial and biaxial tension. 

An analysis of models of the Peirce type shows that 
they are not able to.describe the shearing behavior of 
fabrics. Consequently they are unable to correctly de- 
scribe the behavior of fabric tension deformation. Most 
of these models do not account for the effect of hyster- 
esis, which is considerable in fabric behavior. Moreover, 
they are based on some assumptions that do not represent 
the physical reality of the fabric, which makes these 
models incomplete in spite of their strong point, being 
based on a microscopic study. 
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In this work, we have developed a new fabric model 
for the tensile deformation test, based on the empirical 
results of Kawabata. This model integrates Kawabata 
parameters, which indirectly account for all the special 
properties of fabric-nonlinear, anisotropic, and hyster- 
etic behaviors. 

The paper is structured in three sections. In the first, 
we recall the definitions of Kawabata parameters in the 
tensile test. The second section is subdivided in two: in 
the first, we propose an approximation of linearity ac- 
cording to the strain in both cases of the extension and 
recovering process, while in the second, we develop the 
analytical model of tensile force according to the strain 
also in both cases of extension and recovery. The third 
section is devoted to a comparison of the empirical and 
analytical results as well as their discussion. 

Tension Test (KES-FBI) [4] 

To apply the Kawabata tensile test to a fabric sample, 
we lay it flat between two horizontal grips (one fixed and 
the other mobile) 5 cm apart. The useful dimension of the 
sample is thus 5 cm long and 20 cm wide. The mobile 
grip moves at speed v,, either during extension or return, 
at a low and constant rate (0.1 m d s  5 v, 5 0.2 mm/s) 
in order to exert continuously increasing tension up to a 
(500 gf/cm) threshold, before allowing it to return to its 
initial position. The tension in the direction of the width 
is limited because of the significant width of the sample. 
The shape of the stress-strain diagram, illustrated in 
Figure 1, is generally obtained for the two orthogonal 
directions, warp and weft. 

Force (gvcm) 
t 

FIGURE 1. Shspe of the tensile diagram (test of the Kawabata 
KES-FB1). 

From the diagram, we obtain four parameters (pro- 
posed by Kawabata), defined as follows: 

1. EMT = maximum strain (in %): the relative ex- 
tension corresponding to the force limits f,,, = 500 
gf/cm. 

2. WT = tensile energy per unit of area (in gf - 
cm/cm2), expressed by the following formula: 

lvT= r T f ( € ) d €  , (1)  

wheref = tensile force in the case of extension by a unit 
of length (in gf/cm), hnd E = strain (in %). 

3. LT = tensile linearity: the ratio of IVT and WOT, it 
is a dimensionless parameter that characterizes the be- 
havior of the tensile test of the sample. If this number is 
equal to 1, the behavior is linear; if it is higher or lower 
than 1, the tensile diagram is, respectively, concave or 
convex: 

\vT 
WOT ’ LT= - (2) 

where 

(3) 

with f,, = 500 gfkm, and WOT is the surface of 
triangle OAB (Figure 1.). OA is the theoretical tensile 
curve when LT = 1. 
4. RT = resilience (in %), the capacity of restitution 

of the tensile energy during the recovery process; it is the 
ratio of surface \VT’ to surface WT, formulated by 

IVT’ 
IVT RT=-X100 , (4) 

where 

\VT’ = - f’(€)& , ( 5 )  I” EAfT 

with f = tensile force in the case of the recovery process 
by a unit of length (in gf/cm). 

Tensile Linearity Approximation and Tensile 
Force Modeling 

The tensile diagram given by the Kawabata test (KES- 

FBI) illustrated in Figure 1 shows that the behavior of 
fabric in the tensile test is nonlinear and presents hyster- 
esis. Indeed, to develop an analytical model of the tensile 
force taking account of all these effects, we have chosen 
to model the functions (forces) measured directly using 
the Kawabata parameters LT, WT,  and RT. 
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TENSILE LINEARITY APPROXIhlATION ACCORDING 
TO DEFORMATION 

A digitalization of the tensile diagrams in extension 
and recovery enables us to evaluate the linearity ratios 
(in the extension and recovering process) according to 
the strain and to plot the curves (see Figure 2.) Knowing 
that the linearity of the tensile deformation of fabrics (in 
extension and recovery) is always lower or equal to 1, in 
the interval [0, EAIT], linearity functions for both cases 
can be respectively approximated as follows: 

L T ( 6 )  B E  + 1 with B is a constant <1 , (6) 

From Equations 1, 2, 3, and 6, we have 

Now since f is continuous, derivable, and the derivative 
is continuous, the derivation of Equation 9 with respect 
to E gives 

B 
with E f 0 . (10) 

\ a 4  1 -- _ - -  
f ( € )  ( B € +  I )  

LT’(E)  + with is constant <’ * (7) Knowing that f is a positive function, integrating Equation 
10 between E and EhlT, we obtain, since f(EMT) = f,,, 

Linearity 

1 1% ( f (4 )  = log ( (Be  1)3) 
A 

+ log (fm- ‘BE;;; ”4 . (1 1) 

In Equation 11, we set 

(BEMT + 113 
A 2 = f m 3 r  EhfT , 

with 

2 IW 
L T =  BEAIT+ 1 and EhIT=-  . 

0 EhlT sfrain (%) % LTfmxx 
0 

We have 
FIGURE 2. Shape of the curves of linearity according to strain 

(extension and recovery process). 
* (12) 

LTfmzx 
and B = (LT - 1) - 

2\vT 2IvT 
fm3,2LTJ AZ = ~ 

MODELIXG TENSILE FORCE 

Resollition of the Problem f o r  Exremion 

According to the portion of extension of the tensile 
diagram (Figure I), f is a function with only one variable, 
which verifies the following conditions: f is a nionoto- 
nous function on [0, EMT],  with EhIT a real constant, f 
is a positive function on [0, E M T ] ,  f(0) = 0, and 
f (Eh1T) = fnlax, where 

2 WT 
E h l T = -  . 

LTfm3, 

Neglecting the approximation error, we will consider 
henceforth that approximation 6 is an equality. 

Finally, the tensile force f in the case of extension is 
established starting from Equations 11 and 12: 

E E  [O,EMT] . (13) 

Resolirtiori of the Problem for the Recovery Process 

In this case, the resolution of the problem is similar to 
the preceding one: consider a function f with only one 
variable, which verifies the same conditions as f [accord- 
ing to the portion of the recovery process in the tensile 
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diagram (Figure l)] and replace the constants A2 and B 
with the following constants A ' ,  and B': 

Knowing that 

WT' 
WOT ' 

LT' = - 

we obtain according to Equations 2, 4, and 15, 

LT LT' LTRT 
1VT WT' 100 .' and LT' = ~ (16) -=- 

Hence, by replacing 16 in 14, we find 

F. 

FIGURE 4. Exoerimental lcontinuous line EC,  and EC,) and theo- _. 
retical (discontinuous line TC,  and TC,) tensile diagrams in the warp 
and weft directions for sample 2. LTRT 

and B ' =  -- ( 100 I ) %  . 

(17) 

Finally, we obtain the tensile forcef in the case of the 
recovery process, starting from Equation 11, where B is 

(B'EMT+ 113 
, and 

EMT 
replaced by B' and where A" = f,, 

using Equation 17, we get 

f,,,;RT3LT4e 
3 

€ +  100) 
LTfmzx 

(LTRT - 100) - 
21vT 

f ) ( d  = 

E E [0, EMT] . (18) 

Comparing the Experimental and Theoretical 
Results 

The experimental results of uniaxial tension on two 
fabric samples are shown in Figures 3 and 4 (continuous 

lines EC, and EC,). The two fabric samples are very 
different from the point of view of their mechanical 
behavior. The first one is rigid in the two orthogonal 
directions, warp and weft, while the second one is rigid 
in the weft direction, but very elastic in the warp direc- 
tion. The mechanical properties (Kawabatn parameters) 
obtained from the curves resulting from the experimental 
tests of the two samples are presented in Table I. 

By introducing these parameters into Equations 13 and 
18, we can get the tensile force according to the strain, 
and then obtain the theoretical tensile curves of the two 
fabric samples. These are illustrated by discontinuous 
lines T C ,  and TC,  (Figures 3 and 4), while the experi- 
mental curves are shown for comparison by continuous 
lines EC, and EC,. A similar agreement between the 
experimental and theoretical results can be obtained for 
other samples. 

FIGURE 3. Experimental (continuous line EC, and EC,) 
and theoretical (discontinuous line TC,  and TC,) tensile 
diagrams in the "';up and weft directions for sample I .  

E (STRAIN) . % 
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TABLE I. Kawabata parameters in the tensile test for the two 
fabric samples 

Simple No. 1 No. 2 

Direction warp Weft warp Weft 

LT, no unit 0.626 0.696 0.450 0.866 

RT, % 62.93 64.29 49.06 56.44 
WT, gf - cm2/cm 20.50 16.10 53.2 10.10 

NOTATION 

TC, theoretical curve in the warp direction 
TC, theoretical curve in the weft direction 
EC,  experimental curve in the warp direction 
EC, experimental curve in the weft direction 

As shown by the comparison (Figures 3 and 4) of the 
experimental and theoretical data for the two samples, 
the fit is good between the empirical and theoretical 
tensile curves even though they are based on a simple 
analytical model with simple assumptions. However, this 
comparison also shows a slight difference between these 
curves on the portion of the recovery process in the warp 
direction. This difference is due either to errors of pre- 
cision at the time of determining the Kawabata parame- 
ters or to an error in the theoretical expression for the 
linearity LT( E), which is approximated by a linear func- 
tion. If we calculate the Kawabata parameters from the 
theoretical tensile curves, we obtain the same values as 
those evaluated from experimental tensile curves. How- 
ever, we automatically obtain the same EMT. The va- 
lidity of this model is thus relatively limited to the test 
conditions of KES and more particularly to a fabric sam- 
ple 5 cm long and 20 crn wide. 

Experimental and theoretical tensile curves are traced 
(Figures 3 and 4) by using the same reduction of scale for 
each fabric in each testing condition (warp and weft 
directions), to enable the comparison of empirical and 
theoretical plots. 

Conclusions 

The analytical model presented in this work is based 
on the empirical results of the Kawabata (KES) tensile 
tests and on a linear approximation of LT(E). Integration 
of the Kawabata parameters in this model allows it to be 
more precise when modeling fabric tensile deformation. 
This precision can be verified by comparing the expen- 
mental and theoretical results that we have presented. 
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