The glutarimide entity constitutes an essential part of many natural products with antibacterial, antiviral or cytotoxic activity. A general synthetic procedure for the preparation of glutarimide derivatives therefore is of interest to many natural product chemists.

Working on glutarimide nucleosides we needed a method to introduce a glutarimide ring in one step. Alkylation of the glutarimide 2,6-dianion is known, but requires too drastic reaction conditions. In analogy with the synthesis of showdomy-cin via the Wittig reaction of protected ribose with triphenylosphoranylidenesuccinimide, we prepared the corresponding glutarimide ylid 2.

Michael additions of stabilized phosphonium ylides have been described in the literature.³ Addition of triphenylphosphoranylideneacetamide 1 to methyl acrylate in methanol occurred at room temperature. The intermediate glutamic ester could not be detected, but directly cyclized to 2-triphenylphosphoranylideneglutarimide 2, which crystallized from the reaction mixture. Extension of this reaction could be achieved with some

$$(C_6H_5)_3$$
 $\stackrel{\uparrow}{\stackrel{\sim}{\longrightarrow}}$ $\stackrel{NH_2}{\stackrel{\sim}{\bigcirc}}$ + $\stackrel{CO_2CH_3}{\stackrel{\sim}{\longrightarrow}}$ $\stackrel{MeOH}{\stackrel{r.t.}{\stackrel{\sim}{\bigcirc}}}$ $\stackrel{CO_2CH_3}{\stackrel{\sim}{\longrightarrow}}$ $\stackrel{NH_2}{\stackrel{\sim}{\longrightarrow}}$ \stackrel

+
$$\equiv -\text{CO}_2\text{CH}_3$$

$$\frac{\text{CHCl}_3/\text{MeOH}}{\text{0°C-RT, 30 min}} \\ \text{65 \%} \\ \text{(C}_6\text{H}_5)_3 \\ \text{(C}_6\text{H}_5)_4 \\ \text{(C}_6\text{H}_5$$

2-Substituted Glutarimides via Preformed Wittig Reagents

M.J. Wanner, G.J. Koomen*

Lab of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, NL-1018 WS Amsterdam, The Netherlands

Triphenylphosphoranylideneacetamide (1) reacts with some Michael-acceptors to give crystalline 2-triphenylphosphoranylidene glutarimides. The Wittig reaction of 2 with several aldehydes in refluxing 1,2-dichloroethane affords the corresponding 2-alkylideneglutarimides 7 in 50–98 % yield.

Table 1. Phosphorus Ylides 2-5 Prepared

Product	Yield ^a (%)	mp (°C) ^b (solvent)	Molecular Formula ^c	IR (CHCl ₃) ^d v (cm ⁻¹)	¹H-NMR (CDCl ₃ /TMS)¢ δ, J(Hz)
2	70	262-263 (CH ₂ Cl ₂ /ether)	C ₂₃ H ₂₀ NO ₂ P (373.4)	3400, 1685, 1600	2.0-2.6 (m, 4H); 7.6 (m, 15H)
3	84	152–155 (DMF)	$C_{25}H_{23}N_2O_3P$ (430.5)	3400, 1690, 1670, 1605	1.89 (s, 3H); 2.0-2.6 (m, 3H); 5.60 (m, 1H); 6.81 (d, 1H, $J = 6$, NH); 7.6 (m, 15H)
4	65	177-181 (CH ₂ Cl ₂ /ether)	$C_{24}H_{22}NO_3P$ (403.4)	3520, 3405, 1670, 1605, 1545	3.56 (s, 3H); 5.34 (d, 1H, $J = 15$); 5.4 (br s, NH ₂); 7.14 (dd, 1H, $J = 15$, $J = 18$); 7.6 (m,
5	50	291-293 (DMF)	$C_{23}H_{18}NO_2P$ (371.4)	3390, 1630, 1610, 1550	15H) 5.52 (dd, 1H, J = 9, J = 3); 6.67 (dd, 1H, J = 13, J = 9); 7.6 (m, 15H)

a Yield of isolated products.

b Uncorrected.

[°] Satisfactory microanalysis obtained: $C \pm 0.34$, $H \pm 0.08$, $N \pm 0.11$, except 3, which contains varying amounts of DMF.

^d Recorded on a Perkin Elmer 1310 spectrophotometer.

Recorded on Bruker WM 250 and AC 200 instruments.

326 Communications SYNTHESIS

activated α,β -unsaturated esters. With methyl propiolate the intermediate adduct 4 was isolated. Cyclization to 5 occured during E/Z-isomerization in refluxing acetic acid. With substituted acrylic esters such as methyl crotonate and methyl methacrylate, no glutarimides were formed. At elevated temperatures the starting ylide 1 decomposed.

The ylide 2 proved to be a very versatile and extremely stable reagent, that could be applied to the synthesis of a variety of substituted glutarimides in good yields. In Table 2 the reactions with aliphatic, aromatic and carbohydrate aldehydes are summarized. Best results were obtained by carrying out the reaction in 1,2-dichloroethane, this solvent being superior to toluene or acetonitrile. With the more stable ylids 3 and 5 no Wittig reactions were observed with unactivated aldehydes. The conversion of 7e to C-nucleosides will be reported elsewhere.4

Triphenylphosphoranylideneacetamide (1):

Ylide 1 is prepared according to Ref. 5 from triphenylphosphine and chloroacetamide.

2-Triphenylphosphoranylideneglutarimide (2):

Methyl acrylate (4.93 mL, 55 mmol) is added to a suspension of triphenylphosphoranylideneacetamide (1, 15.95 g, 50 mmol) in absolute MeOH (120 mL). This suspension is stirred at room temperature and after 20 h the precipitated product is isolated by filtration, washed with MeOH (2×20 mL) and Et₂O (3×25 mL) and air-dried; yield: 13.05 g (70%).

4-Acetylamino-2- triphenylphosphoranylideneglutarimide~(3):

A suspension of triphenylphosphoranylideneacetamide (1, 0.479 g, 1.5 mmol) and ethyl 2-acetylamino acrylate (0.157 g, 1.0 mmol) in absolute EtOH (3 mL) is stirred at room temperature for 48 h. The precipitate is filtered, washed with EtOH (2×1 mL) and Et2O

and MMP greatral Data for 2. Alkylideneglytarimides 7

7	$IR^a v (cm^{-1})$	1 H-NMR (CDCl ₃ /TMS) b , δ , J (Hz)
a	3370, 1725,	2.70 (s, 4H); 5.67 (br s, 1H); 6.36 (br s,
	1710, 1635	1H); 8.55 (br s, 1H, NH)
b	3380, 1720,	0.96 (t, $J = 7$, 3H); 1.52 (m, 2H); 2.24
	1690, 1640	(m, 2H); 2.65 (m, 4H, glutarimide); 7.01 (dt, 1H, $J = 1$, 8); 8.2 (br s, 1H, NH)
c	3360, 1715,	2.62 (m, 2H); 3.0 (m, 2H); 7.39 (s, 5H);
•	1685, 1620	7.89 (br s, 1H); 8.04 (br s, 1H, NH)
d	3380, 1720,	$(DMSO-d_6)$: 2.54 (m, 2H); 2.93 (m, 2H);
u	1695, 1640	7.75 (s, 1H); 7.77 (d, 1H, $J = 8.7$); 8.29
	10,2, 10.0	(d, 1H, $J = 8.7$); 11.05 (s, 1H, NH)
$\mathbf{e}(E)$	3380, 1725,	1.38 (s, 3H); 1.45 (s, 3H); 2.40 (d, 1H, J
C(L)	1705, 1650	= 4.9, OH); 2.6–2.7 (m, 4H, glutarimi-
	1705, 1050	de); 3.34 (m, 2H); 3.65 (m, 1H); 4.25 (dd,
		1H, $J = 9.3$, 6.1); 5.01 (dd, 1H, $J = 9.3$,
		6.1); 6.89 (d, 1 H, $J = 9.3$); 7.2–7.5 (m,
		15H); 7.45 (s, 1H, NH)
e(Z)	3380, 1730,	1.34 (s, 3H); 1.39 (s, 3H); 2.5 (m, 4H,
C (2)	1710, 1655	glutarimide); 3.26 (m, 2H); 3.7 (m, 1H);
	1710, 1055	4.42 (m, 1H); 5.56 (dd, 1H, $J = 6.9, 7.8$);
		6.15 (d, 1H, $J = 6.9$); 7.2–7.5 (m, 15H);
		8.02 (br s, 1 H, NH)
f(E)	(KBr):	DMSO- d_6 : 2.5 (m, 2H, glutarimide); 2.7
I(L)	3240, 1720,	(m, 2H, glutarimide); 4.0–4.2 (m, 4H):
	1690, 1650	5.10 (d, 1H, $J = 7.3$); 5.68 (s, 1H); 5.86
	10,0,1000	(s, 1H); 6.78 (d, 1H, $J = 7.3$); 7.4 (m.
		10 H); 10.88 (s, 1 H, NH)
f(Z)	3380, 1720,	2.5-2.8 (m, 4H, glutarimide); 3.96 (d
1(2)	1700, 1650	1H, $J = 1.2$); 4.28 (s, 1H); 4.29 (AB-
	1700, 1030	system, 2H, $J = 12.6$, 1.0); 5.48 (dd, 1H
		J = 7.3, 2.5; 5.57 (s, 1H); 5.72 (s, 1H)
		6.44 (d, 1H, $J = 7.3$); 7.2–7.6 (m, 10 H)
		8.24 (s, 1H, NH)
σ	3370, 1720,	1.75 (br s, 1H, OH); 2.4–2.7 (m, 4H
g	1700, 1645	glutarimide); 3.0 (br s, 1H, OH); 3.55 (m
	1700, 1045	2H); 3.85 (m, 1H); 4.53 (s, 2H); 4.66 (s
		2H); 6.89 (d, 1H, $J = 8.3$); 7.3 (s, 10H)
		8.30 (s, 1H, NH)

- Recorded on a Perkin Elmer 1310 spectrophotometer in CHCl₃, except 7f(E).
- Obtained on Bruker WM 250 and AC 200 instruments in CDCl₃, unless stated otherwise.

Table 2. 2-Alkylideneglutarimides 7 Prepared

Prod- uct	R	Reaction Time (h)	Yield ^a (%)	E: Z	mp (°C) ^b (solvent)	Molecular Formula ^c
7a	Н	0.5	88	– E	116-117 (CH ₂ Cl ₂ /ether) 103-105 (ether/hexane)	C ₆ H ₇ NO ₂ (125.1) C ₉ H ₁₃ NO ₂ (167.2)
	CH ₃ CH ₂ CH ₂	24 16	52 91	E E	209–210 (CH ₂ Cl ₂ /hexane)	$C_{12}H_{11}NO_2$ (201.2)
i I	C ₆ H ₅ 4 - O ₂ NC ₆ H ₄	0.25	98	E E	231-233 (DMF/ether)	$C_{12}H_{10}N_2O_4$ (246.2)
e	(C ₆ H ₅) ₃ CO OH O O H ₃ C CH ₃	120	50	3:1	E: 183–185 (CH ₂ Cl ₂ /ether) Z: oil	C ₃₂ H ₃₃ NO ₆ (527.6)
f	C ₆ H ₅	2	91	1.6:1	E: 285-287 (DMF/ether) Z: oil	C ₂₄ H ₂₃ NO ₆ (421.5)
g	BzlO OH	32	68	E	oil	C ₂₄ H ₂₇ NO ₆ (425.5)

Yield of isolated product 7 based on 2.

Uncorrected.

Satisfactory microanalyses obtained: $C\pm0.23$, $H\pm0.20$, $N\pm0.10$. Exceptions: 7f, C-0.85, H+0.11, N+0.26; 7g, C-0.84, H+0.25, N=0.10-0.06.

 $(3 \times 2 \text{ mL})$, and air-dried. According to ¹H-NMR the product contains 0.5 mol of ethanol, which is removed by recrystallization from DMF; yield: 0.38 g (84%); physical data are given in Table 1.

Methyl-4-Carbamoyl-4-triphenylphosphoranylidene-2-butenoate (4): Methyl propiolate (88.5 μ L, 1.0 mmol) is added dropwise to a solution of triphenylphosphoranylideneacetamide (1; 0.319 g, 1.0 mmol) in a mixture of CHCl₃ (2 mL) and absolute MeOH (2 mL) at 0°. The solution is stirred at room temperature for 30 min, the solvents are removed in vacuo and the yellow product is crystallized from CH₂Cl₂/Et₂O; yield: 0.26 g (65%); see Table 1.

2,6-Dioxo-3-triphenylphosphoranylidene-1,2,3,6-tetrahydropyridine (5): Ylid **4** (0.101 g, 0.25 mmol) is refluxed in acetic acid (1 mL) for 30 min. The solvent is evaporated and the residue is recrystallized from DMF; yield 0.046 g (50%); see Table 1.

2-Alkylideneglutarimides 7; General Procedure:

A suspension of 2-triphenylphosphoranylideneglutarimide (2; 0.373 g, 1.1 mmol) and aldehyde 6a-g (1.0 mmol) is stirred and refluxed in 1,2-dichloroethane (4 mL) under nitrogen for the time indicated in Table 2. To suppress the formation of blue colored by-products, a small amount of hydroquinone is added. The reaction is followed with TLC (silica gel, EtOAc/hexanes). The products are isolated by direct crystallization from the reaction mixture (7d and 7e-Z) or by flash chromatography (silica gel, 230-400 mesh, EtOAc/hexanes). Yields and physical data are given in Tables 2 and 3.

Received: 29 September 1987; revised: 17 November 1987

- (1) Wolfe, J.F., Rogers, T.G. J. Org. Chem. 1970, 35, 3600.
- (2) Barrett, A.G.M., Broughton, H.B., Attwood, S.V., Gunatilaka, A.A.L. J. Org. Chem. 1986, 51, 495.
- (3) Bestmann, H.J., Zimmermann, R. in: Houben-Weyl, 4th ed., Vol. E1, Regitz, M. (ed.), Georg Thieme Verlag, Stuttgart, 1982, pp. 653 and 704.
- (4) Wanner, M.J., Koomen, G.J. Nucleosides and Nucleotides, in press.
- (5) Trippett, S., Walker, D.M. J. Chem. Soc. 1959, 3874.