
SELECTIVE HYDROGENOLYSIS OF THE BENZYLOXYCARBONYL PROTECTING GROUP OF N[¢]-LYSINE IN CYCLOPEPTIDES CONTAINING A BENZYLIC PHENYL ETHER FUNCTION. EVIDENCE FOR N[¢]-METHYLATED LYSINE SIDE PRODUCTS.

Jean-Paul Mazaleyrat^{*}, Juan Xie and Michel Wakselman CNRS-CERCOA, 2, rue Henri Dunant, F-94320 Thiais, France

Abstract: Selective hydrogenolytic cleavage of the N^{ϵ} -Z protecting group of lysine in cyclopeptides c[-(Glycyl)_n-A-B-N^{\epsilon}-Z-Lysyl-2-Phenoxymethyl-5-Aminobenzoyl-] (A = B = Glycyl, n = 2 or A = Phenylalanyl, B = Alanyl, n = 2 and 3) occured in both acidic (MeOH/a.AcOH) and neutral (MeOH/DMF) solvents, with Pd/C catalyst. In the latter case, a N^{\epsilon}-(bis)-methylated lysine side product was isolated.

The recent paper of Rocchi et al ¹ concerning N-alkylation of aminoacids during hydrogeno ytic deprotection prompts us to publish our results concerning hydrogenolytic cleavage of the Z protecting group of N^{ϵ}-lysine in cyclopeptides of type 1 (Fig. 1) incorporating a phenoxymethyl-substituted aminobenzoic resilue. In the course of elaboration of new substrates/inhibitors of trypsin-like proteases,^{2,3} we examined the hydrogenolytic deprotection conditions of the cyclopeptides **1a-c** and others, with the purpose of obtaining on one hand compounds of type 2 resulting from the selective deprotection of the N^{ϵ}-Lys Z group, and on the o her hand compounds of type 3 resulting from hydrogenolysis of both the Z group and the benzylic phenoxy group

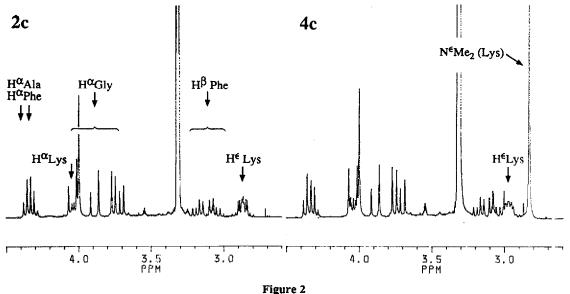


Figure 1

Hydrogenations were conducted in a Parr apparatus, at pressures of 2-3 atmospheres and at room temperature, with always a large excess of palladium on charcoal as catalyst. Using the solvent mixture DMF/MeOH for solubility reasons, long reaction times had to be applied for reaction completion. A select ve cleavage of the benzyloxycarbonyl (Z) protecting group of N^{ϵ}-lysine was always observed: compounds of type 2 highly predominated over compounds of type 3. However, analytical t.l.c. (SiO₂; solvent system EtOAc/n-BuOH/AcOH/H₂O 1:1:1:1) presented spots (UV light), sometimes of quite high intensity, corresponding to side products of structure 4. Typically, catalytic hydrogenation of 1b⁴ in DMF/MeOH 1:9 or

16 h gave 2b (51 %) ⁴ with traces amounts of 3b and 4b (not isolated). From 1c,⁴ in DMF/MeOH 1:1 for 22 $_{1}$, the cyclopeptides 2c, 3c and 4c were isolated with 21 %, 7 % and 23 % yield,⁴ respectively.

The structure of 4c was evidenced by ¹H NMR analysis and FAB mass spectroscopy. In ¹H NMR (CD₃OD) (Fig.2), the main differences between 2c and 4c was for the latter a 0.1 ppm downfield shifting of the CH₂⁶ multiplet and the presence of a singlet at 2.82 ppm (integrating for 6 protons), corresponding to N⁶-[CH₃]₂ (Lys). The signals for the aromatic protons of the phenoxy group and the AB quartet corresponding to C₆H₅O-CH₂-Ar ($\delta = 5.19$ ppm; J = 12.1 Hz) were present in 4c, showing that N-(bis)-methylation had occured faster than reductive cleavage of the benzyl ether.

Cleaner reactions and still selective cleavage of the Z group were observed when hydrogenolysis was performed in the presence of water and acetic acid. The cyclopeptide $1a^{2,4}$ in MeOH/H₂O/AcOH 7:2:1 gave 2a (70%)⁴ and traces of 3a (not isolated) for 0.5 h reaction time, and 3a (65%)⁴ after 24 h.

Thus, a selective cleavage of the N^{ϵ}-Z protecting group of lysine over a benzyl phenyl ether substituent in cyclopeptides 1 can be performed in both neutral (DMF/MeOH) and acidic solvent systems. In the former case however, longer reaction time results in the formation of N^{ϵ}-methylated lysine side products, resulting from reaction of N^{ϵ}HCH₃ with formaldehyde, followed by *in situ* reduction.¹

References and Notes

- 1. Filira, F.; Biondi, L.; Gobbo, M. and Rocchi, R., Tetrahedron Letters, 1991, 32, 7463-7464.
- Wakselman, M.; Mazaleyrat, J.P.; Xie, J.; Boggetto, N.; Montagne, J.J.; Vilain A.C. and Reboud-Ravat x, M., Peptides 1990, Giralt, E. and Andreu, D., Eds., ESCOM Science Pub., Leiden, 1991; pp 794-796.
- 3. Wakselman, M.; Mazaleyrat J.P.; Xie, J.; Montagne, J.J.; Vilain A.C. and Reboud-Ravaux, M., Eur. J. Med. Chem., 1991, 26, 699-707.
- 4. All cyclopeptides 1-4 gave satisfactory analytical data (¹H NMR at 300 MHz, C,H,N analysis and/or FAB spectroscopy). Details of synthesis will be published elsewhere. The given yields in 2-4,a-c correspond to isolated pure compounds.

(Received in France 21 April 1992)