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The number and nature of coordinating entities as well as the size of chelating cavity in rhodamine based
chemosensors were tuned to enhance the selectivity and sensitivity for Fe3þ ions. An intense pink color
development and enhancement in fluorescence emission intensity of chemosensor 5 upon complex
formation at pH 7$4 enabled the detection of Fe3þ ions in the presence of other competitive metal ions
like Liþ, Naþ, Kþ, Csþ, Mg2þ, Ca2þ, Sr2þ, Cr3þ, Mn2þ, Fe2þ, Cu2þ, Co2þ, Ni2þ, Zn2þ, Cd2þ, Hg2þ, and Pb2þ. A
plausible application of chemosensor 5 in the imaging of live fibroblast cells exposed to Fe3þ ions is also
demonstrated.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Selective detection of Fe3þ assumes importance because iron
plays an important role in cellular metabolism [1] and enzyme
catalysis [2e4]. Iron is an essential trace element for both plants
and animals, including humans. Consequently, deficiency in Fe3þ

leads to anemia, liver and kidney damages, diabetes, and heart
diseases [5]. Several techniques like atomic absorption spectros-
copy [6], colorimetry [7], spectrophotometry [8e10], and voltam-
metry [11] have been developed for Fe3þ detection, but these
require sophisticated equipments, tedious sample preparation
procedures, and trained analysts. Therefore, chemosensors which
allow naked-eye detection, have advantages over other methods in
being easy to operate, portable, and not requiring sophisticated
instrumentation.

Rhodamine is one of the most attractive fluorochromes because
of its photo physical properties [12]. Recently, much effort has been
focused on the development of rhodamine based chemosensors
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[13e17] and polymeric chemosensors [18,19] for the detection of
heavy metal ions. However, only a few chemosensors are available
in literature for Fe3þ detection [20e48], and some of the chemo-
sensors developed for selective detection of Fe3þ suffer from cross-
sensitivity toward competitive metal ions like Cu2þ and Cr3þ

[41e48]. Hence, a chemosensor that detects Fe3þ even in the
presence of high concentrations of Cu2þ and Cr3þ would be more
attractive. Since Fe3þ is a fluorescence quencher because of its
paramagnetic nature [49], development of chemosensors that
exhibit fluorescence enhancement upon binding with Fe3þ would
be very much attractive. According to the theory of hard and soft
acids and bases (HSAB theory), a stable complex is formed between
a hard base and a hard acid such as Fe3þ ions. This theory offers
a possibility to develop ligands with improved selectivity toward
a particular metal ion depending upon the strengths of hard and
soft acids and bases. The nature and number of the external
chelatingmoieties incorporatedwith the rhodamine [41,50] play an
important role for tuning metal ion selectivity. We used these
advantages for developing new chemosensors that show selectivity
for a single metal ion of interest over other competitive metal ions.

For the present study, we synthesized six rhodamine based
chemosensors by subtly changing the number, nature and size of the
coordinating entities. 5 showed the highest degree of sensitivity and

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:thennarasu@gmail.com
mailto:abmandal@clri.res.in
www.sciencedirect.com/science/journal/01437208
http://www.elsevier.com/locate/dyepig
http://dx.doi.org/10.1016/j.dyepig.2012.05.025
http://dx.doi.org/10.1016/j.dyepig.2012.05.025
http://dx.doi.org/10.1016/j.dyepig.2012.05.025


N.R. Chereddy et al. / Dyes and Pigments 95 (2012) 606e613 607
selectivity for Fe3þ over Cu2þ as compared with the other five
analogs. The selectivity and sensitivity of 5 for Fe3þ were exploited
for the detection of live fibroblast cells exposed to Fe3þ ions.

2. Experimental section

2.1. General

Dry acetonitrile and double distilled water were used
throughout the experiment. All the materials for synthesis were
purchased from commercial suppliers and used without further
purification. The solutions of metal ions were prepared from the
corresponding chloride salts. Absorption spectra were recorded on
a CARY BIO 50 UVeVIS spectrophotometer. Fluorescence
measurements were performed on a Perkin Elmer LC 45 Lumi-
nescence spectrometer. All pH measurements were made with
a Systronics mpH System Model 361. NMR spectra were recorded
using a JEOL eECP500 MHz spectrometer operated at 500 MHz. ESI
MS spectra were obtained on a HP 1100 LC-MS Analyzer without
using the LC part. Fluorescence imaging experiments were per-
formed using Olympus CK 40 Fluorescence Microscope. All
measurements were carried out at room temperature (w298 K).

2.1.1. Synthesis of rhodamine hydrazide
Rhodamine hydrazide was synthesized following the reported

procedure [31]. To rhodamine B hydrochloride (0.96 g, 2 mmol)
dissolved in 15 mL methanol, excess amount of hydrazine hydrate
(1 mL, 6.98 mmol) was added and the reaction mixture was
refluxed till the pink color disappeared (w3e4 h). After that, the
reaction mixture was cooled to room temperature, poured into
distilled water and extracted with ethylacetate (6 � 25 mL). The
combined extract was washed with brine, dried with anhydrous
sodium sulfate, filtered, and then concentrated under reduced
pressure to yield 0.62 g (68%) of rhodamine hydrazide.

1H NMR (CDCl3, 500 MHz): d 1.16 (t, J ¼ 7.5 Hz, 12H, NCH2CH3),
3.32 (q, J ¼ 6.8 Hz, 8H, NCH2CH3), 3.63 (bs, 2H, NH2), 6.28 (dd,
J ¼ 2.3 Hz, 2H, XantheneeH), 6.43 (d, J ¼ 2.3 Hz, 2H, XantheneeH),
6.45 (d, J ¼ 9.2 Hz, 2H, XantheneeH), 7.10 (m, 1H, AreH), 7.44 (t,
J ¼ 3.5 Hz, 2H, AreH), 7.93 (m, 1H, AreH); 13C NMR (CDCl3,
125 MHz): d 12.7, 44.5, 66.0, 98.0, 104.5, 108.1, 123.1, 123.9, 128.1,
128.2, 130.1, 132.6, 148.9, 151.6, 153.9, 166.3.

2.1.2. Synthesis chemosensor 1
To a solution of rhodamine hydrazide (0.46 g, 1 mmol) dissolved

in 20 mL methanol, pyridine-2-aldehyde (0.11 g, 1 mmol) was
added. The red color mixture thus obtained was refluxed in an oil
bath for 3 h. After that, the solution was cooled to room tempera-
ture. The resultant mixture was subjected to silica gel 100e200
mesh column chromatography using 1:3 hexane-ethtylacetate as
eluent to yield 0.40 g (75%) of 1 as colorless solid.

1H NMR (CDCl3, 500 MHz): d 1.14 (12H, t, J ¼ 6.9 Hz, NCH2CH3),
3.29 (8H, q, J ¼ 6.9 Hz, NCH2CH3), 6.25 (2H, d, J ¼ 2.3 Hz,
XantheneeH), 6.41 (2H, d, J ¼ 3.0 Hz, XantheneeH), 6.54 (1H, d,
J ¼ 9.1 Hz, XantheneeH), 7.11 (2H, m, AreH, imineeH), 7.46 (2H, m,
AreH), 7.60 (1H, d, J ¼ 6.9 Hz, pyridineeH), 8.00 (1H, t, J ¼ 6.9 Hz,
pyridineeH), 8.34 (1H, s, AreH), 8.45 (1H, d, J ¼ 4.6 Hz,
pyridineeH); 13C NMR (CDCl3, 125 MHz): d 12.7, 44.4, 65.9, 98.3,
105.5, 108.1, 120.8, 123.7, 123.8, 127.7, 128.0, 128.3, 133.9, 136.3,
145.7, 149.0, 149.1, 152.6, 152.9, 154.5, 165.7.

ESI-MS: calcd for C34H35N5O2 m/z (Mþ) 545.3, found (M þ H)þ

546.4.

2.1.3. Synthesis chemosensor 2
Rhodamine hydrazide (0.46 g, 1 mmol) was dissolved in 20 mL

methanol and furan-2-aldehyde (0.10 g, 1 mmol) was added. Upon
addition red color developed immediately. Then the mixture was
refluxed in an oil bath for 3 h. After that, the solutionwas cooled to
room temperature. The resultant mixturewas subjected to silica gel
100e200 mesh column chromatography using 1:3 hexane-
ethtylacetate as eluent to get 0.395 g (74%) of 2 in pure form as
colorless solid.

1H NMR (CDCl3, 500 MHz): d 1.15 (12H, t, J ¼ 6.9 Hz, NCH2CH3),
3.31 (8H, q, J ¼ 6.9 Hz, NCH2CH3), 6.25 (2H, d, J ¼ 2.3 Hz,
XantheneeH), 6.35 (1H, s, furaneH), 6.41 (2H, d, J ¼ 2.3 Hz,
XantheneeH), 6.54 (2H, d, J ¼ 9.1 Hz, XantheneeH), 6.59 (1H, s,
furaneH), 7.05 (1H, d, J ¼ 6.9 Hz, AreH), 7.37 (1H, s, imineeH), 7.44
(2H, m, AreH), 7.98 (1H, d, J ¼ 6.9 Hz, furaneH), 8.17 (2H, s, AreH);
13C NMR (CDCl3, 125 MHz): d 12.7, 12.8, 44.4, 65.7, 98.0, 105.5, 108.2,
111.6, 112.3, 123.5,123.6,127.9, 128.1, 128.3,133.6, 136.0,143.9,149.1,
150.7, 152.6, 152.9, 165.3.

ESI-MS: calcd for C33H34N4O3 m/z (Mþ) 534.3, found (M þ H)þ

535.4.

2.1.4. Synthesis of bis-salicylaldehyde derivatives (A, B, C and D)
Salicylaldehyde (5.0 mmol, 0.61 g) was dissolved in 20 mL DMF,

and potassium corbonate (12.5 mmol, 1.73 g) was added and the
mixture was stirred at room temperature. Methelenebromide
(2.5 mmol, 0.44 g), 1,2- dibromoethane (2.5 mmol, 0.47 g), 1,3-
dibromopropane (2.5 mmol, 0.51 g) or 1,4- dibromobutane
(2.5 mmol, 0.55 g) was added drop wise and then the mixture was
stirred under reflux for 6 h. The resultant mixture was partitioned
between water and ethylacetate, ethylacetate layer was collected,
concentrated under reduced pressure and then subjected to silica
gel 100e200 mesh column chromatography using 1:9 hexane-
ethtylacetate as eluent to afford compounds A (0.96 g, 75%), B
(0.97 g, 72%), C (1.07 g, 75%) and D (1.17 g, 75%) in pure form.

2.1.4.1. NMR data of bis-salicylaldehyde (A). 1H NMR (CDCl3,
500 MHz): d 6.01 (2H, s, OCH2O), 7.17 (2H, t, J ¼ 6.9 Hz, AreH), 7.37
(2H, d, J ¼ 8.4 Hz, AreH), 7.61 (2H, t, J ¼ 8.4 Hz, AreH), 7.86 (2H, dd,
J ¼ 1.6 Hz, AreH), 10.46 (2H, s, AldehydeeH); 13C NMR (CDCl3,
125 MHz): d 90.7, 115.0, 123.1, 125.8, 129.0, 136.1, 158.7, 189.2.

2.1.4.2. NMR data of bis-salicylaldehyde (B). 1H NMR (CDCl3,
500MHz): d 4.52 (4H, s, OCH2CH2O), 7.06 (4H, m, AreH), 7.57 (2H, t,
J ¼ 7.6 Hz, AreH), 7.82 (2H, d, J ¼ 6.2 Hz, AreH), 10.43 (2H, s,
AldehydeeH); 13C NMR (CDCl3, 125 MHz): d 67.1, 112.9, 121.5, 125.2,
128.6, 136.1, 160.9, 189.5.

2.1.4.3. NMR data of bis-salicylaldehyde (C). 1H NMR (CDCl3,
500 MHz): d 2.43 (2H, p, OCH2CH2CH2O), 4.33 (4H, t, J ¼ 7.6 Hz,
OCH2CH2CH2O), 7.03 (4H, m, AreH), 7.55 (2H, t, J ¼ 7.7 Hz, AreH),
7.83 (2H, d, J ¼ 7.7 Hz, AreH), 10.49 (2H, s, AldehydeeH); 13C NMR
(CDCl3, 125 MHz): d 29.2, 64.7, 112.5, 121.0, 124.9, 128.8, 136.2, 161.0,
189.6.

2.1.4.4. NMR data of bis-salicylaldehyde (D). 1H NMR (CDCl3,
500 MHz): d 2.10 (4H, s, OCH2CH2CH2CH2O), 4.19 (4H, s,
OCH2CH2CH2CH2O), 6.98 (4H, m, AreH), 7.52 (2H, t, J ¼ 6.9 Hz,
AreH), 7.83 (2H, d, J¼ 6.9 Hz, AreH), 10.49 (2H, s, Aldehyde-H); 13C
NMR (CDCl3, 125 MHz): d 26.0, 67.9, 112.5, 121.0, 124.9, 128.6, 136.1,
161.2, 189.7.

2.1.5. Synthesis of bis-rhodamine chemosensors 3, 4, 5 and 6
Rhodamine hydrazide (0.46 g, 1 mmol) was dissolved in 20 mL

methanol, and bis-salicylaldehyde derivative A (0.13 g, 0.5 mmol), B
(0.14 g, 0.5 mmol), C (0.15 g, 0.5 mmol) or D (0.16 g, 0.5 mmol) was
added. The mixture was refluxed in an oil-bath for w3 h and then
cooled to room temperature. The resultant mixture was subjected
to silica gel 100e200 mesh column chromatography using 1:3
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hexane-ethtylacetate as eluent to afford 3 (0.425 g, 75%), 4 (0.435 g,
75%),5 (0.44 g, 75%) and 6 (0.45 g, 75%) as colorless solids.

2.1.5.1. NMR and Mass analytical data of chemosensor 3. 1H NMR
(CDCl3, 500 MHz): d 1.08 (24H, t, J¼ 7.5 Hz, NCH2CH3), 3.24 (16H, q,
J ¼ 6.9 Hz, NCH2CH3), 5.29 (2H, s, OCH2O), 6.22 (4H, dd, J ¼ 2.3 Hz,
XantheneeH), 6.41 (4H, d, J ¼ 2.3 Hz, XantheneeH), 6.53 (4H, d,
J ¼ 9.2 Hz, XantheneeH), 7.00 (2H, t, J ¼ 7.5 Hz, AreH), 7.08 (2H, d,
J ¼ 6.9 Hz, AreH), 7.12 (2H, d, J ¼ 8.6 Hz, AreH), 7.39 (2H, t,
J ¼ 7.5 Hz, AreH), 7.45 (4H, p, J ¼ 7.5 Hz, AreH), 7.93 (2H, d,
J ¼ 6.9 Hz, AreH), 8.01 (2H, d, J ¼ 6.9 Hz, AreH), 8.67 (2H, s,
imineeH); 13C NMR (CDCl3, 125 MHz): d 12.7, 44.4, 65.7, 91.6, 97.9,
105.7, 108.2, 114.7, 122.4, 123.5, 123.8, 124.7, 126.6, 128.1, 128.3,
128.7, 131.1, 133.5, 141.9, 149.0, 152.5, 153.0, 156.0, 165.3.

ESI MS: calcd for C71H72N8O6 m/z (Mþ) 1132.4, found (M þ H)þ

1133.3.

2.1.5.2. NMR and Mass analytical data of chemosensor 4. 1H NMR
(CDCl3, 500 MHz): d 1.03 (24H, t, J ¼ 7.5 Hz, NCH2CH3), 3.20 (16H, q,
J ¼ 4.6 Hz, NCH2CH3), 4.19 (4H, s, OCH2CH2O), 6.21 (4H, dd,
J¼ 2.3 Hz, XantheneeH), 6.39 (4H, d, J¼ 2.9 Hz, XantheneeH), 6.54
(4H, d, J ¼ 9.2 Hz, XantheneeH), 6.95 (2H, t, J ¼ 7.5 Hz, AreH), 7.00
(2H, d, J ¼ 8.6 Hz, AreH), 7.06 (2H, d, J ¼ 6.9 Hz, AreH), 7.31 (2H, t,
J ¼ 8.1 Hz, AreH), 7.45 (4H, p, J ¼ 7.5 Hz, AreH), 8.02 (4H, t,
J ¼ 6.9 Hz, AreH), 8.69 (2H, s, imineeH); 13C NMR (CDCl3,
125 MHz): d 12.6, 44.4, 65.6, 66.3, 97.8, 105.6, 108.2, 112.4, 121.4,
123.5, 123.8, 124.3, 126.5, 128.2, 128.3, 128.8, 131.0, 133.5, 141.4,
149.0, 152.6, 152.9, 157.1, 165.3.

ESI MS: calcd for C72H74N8O6 m/z (Mþ) 1146.4, found (M þ H)þ

1147.5.

2.1.5.3. NMR and Mass analytical data of chemosensor 5. 1H NMR
(CDCl3, 500 MHz): d 1.07 (24H, t, J ¼ 7.5 Hz, NCH2CH3), 2.05 (2H, p,
J ¼ 6.3 Hz, OCH2CH2CH2O), 3.22 (16H, q, J ¼ 7.5 Hz, NCH2CH3), 3.99
(4H, s, OCH2CH2CH2O), 6.22 (4H, dd, J ¼ 2.3 Hz, XantheneeH), 6.41
(4H, d, J ¼ 1.7 Hz, XantheneeH), 6.56 (4H, d, J ¼ 9.2 Hz,
XantheneeH), 6.85 (4H, m, AreH), 7.04 (2H, d, J ¼ 6.9 Hz, AreH),
7.20 (2H, t, J ¼ 7.5 Hz, AreH), 7.40 (4H, p, J ¼ 7.5 Hz, AreH), 7.95
(2H, d, J ¼ 8.1 Hz, AreH), 7.98 (2H, d, J ¼ 6.3 Hz, AreH), 8.81 (2H, s,
imine-H); 13C NMR (CDCl3, 125 MHz): d 12.8, 29.6, 44.4, 64.9, 65.7,
98.0, 106.0, 108.2, 112.1, 120.7, 123.5, 123.7, 124.0, 126.5, 127.9, 128.3,
128.5, 131.0, 133.5, 142.5, 148.9, 152.6, 152.9, 157.6, 165.3. ESI MS:
calcd for C73H76N8O6 m/z (Mþ) 1160.4, found (M þ H)þ 1161.5.

2.1.5.4. NMR and Mass analytical data of chemosensor 6. 1H NMR
(CDCl3, 500 MHz): d 1.09 (24H, t, J ¼ 6.9 Hz, NCH2CH3), 1.91 (4H, s,
OCH2CH2CH2CH2O), 3.27 (16H, q, J ¼ 6.9 Hz, NCH2CH3), 3.93 (4H, s,
OCH2CH2CH2CH2O), 6.22 (4H, dd, J ¼ 2.3 Hz, XantheneeH), 6.41
(4H, d, J ¼ 2.3 Hz, XantheneeH), 6.55 (4H, d, J ¼ 9.2 Hz,
XantheneeH), 6.77 (2H, d, J ¼ 8.0 Hz, AreH), 6.86 (2H, t, J ¼ 7.5 Hz,
AreH), 7.08 (2H, d, J ¼ 6.9 Hz, AreH), 7.19 (2H, t, J ¼ 8.0 Hz, AreH),
7.44 (4H, p, J ¼ 7.5 Hz, AreH), 7.95 (2H, d, J ¼ 6.9 Hz, AreH), 7.99
(2H, d, J ¼ 7.5 Hz, AreH), 8.81 (2H, s, imineeH); 13C NMR (CDCl3,
O
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Scheme 1. Synthesis of rhodamin
125 MHz): d 12.7, 25.8, 44.4, 65.8, 67.7, 98.0, 106.1, 108.2, 112.0,
120.7, 123.4, 123.7, 124.1, 126.4, 127.9, 128.3, 128.9, 131.0, 133.4,
142.7, 148.9, 152.4, 153.0, 157.6, 165.2.

ESI MS: calcd for C74H78N8O6 m/z (Mþ) 1174.4, found (M þ H)þ

1175.5.

2.2. Preparation of solutions for absorption and fluorescence
measurements

Stock solutions of chemosensors were prepared by dissolving
the required amounts of chemosensors (5.46mg, 5.35mg,11.33mg,
11.47 mg, 11.61 mg and 11.75 mg of chemosensors 1, 2, 3, 4, 5 and 6
respectively, 1.0 mmol) in 1:1 v/v 0.01 M Tris HCleCH3CN (pH 7$4)
and making up to the mark in a 10 mL volumetric flask. Further
dilutions were made to prepare 100 mM solutions for the experi-
ments. To 1.0 mL of this solution in a 10 mL volumetric flasks was
added 9.0 mL 1:1 v/v 0.01 M Tris HCleCH3CN (pH 7$4) containing
different concentrations of metal ions, so as to get an overall dye
concentration of 10 mM for the experiments. Absorption and fluo-
rescence measurements were made using a 3.0 mL cuvette.

3. Results and discussion

Rhodamine hydrazide was prepared as described previously
[51]. Chemosensors 1 and 2 were facilely synthesized by the
condensation of rhodamine hydrazide with pyridine-2-aldehyde
and furan-2-aldehyde, respectively, as shown in Scheme 1, and
characterized by NMR and Mass analyses (Supporting data,
Fig. S3eS8). The existence of spirocyclic ring structure in 1 and 2
were confirmed by the observation of 13C NMR resonances at
w65.88 and w65.66 ppm, respectively (Supporting data, Fig. S4
and S6). Although both 1and 2 contain the rhodamine moiety,
they were colorless in 0.01 M Tris HCleCH3CN mixture (pH 7.4) as
well as in other organic solvents confirming the existence of the
ring-closed spirolactam as the predominant species [52]. The
limited solubility of rhodamine derivatives in water and aqueous
buffer necessitated the use of other organic solvents miscible with
water. Between CH3CN and MeOH, the two organic solvents highly
miscible with water, the rhodamine derivatives 1 and 2 were more
soluble in CH3CN than in MeOH. On studying the absorbance
properties of 1 and 2 in aqueous buffer containing different
proportions of CH3CN, we inferred that the 1:1 mixture of aqueous
buffer and CH3CN would contain the minimum amount of organic
solvent and display excellent solubility of rhodamine derivatives.
The absorbance and fluorescence characteristics of 1 and 2 were
greatly influenced by the addition of Cu2þ or Fe3þ ions. A clear pink
color with a good fluorescence emission developed (Supporting
data, Fig. S9) upon addition of 50 mM concentrations of either
Cu2þ or Fe3þ ions, while other competitive metal ions (Liþ, Naþ, Kþ,
Csþ, Mg2þ, Ca2þ, Sr2þ, Cr3þ, Mn2þ, Fe2þ, Co2þ, Ni2þ, Zn2þ, Cd2þ,
Hg2þ, and Pb2þ) showed negligible effect. The UVeVisible absorp-
tion spectrum of 1 and 2 are shown in the Fig. S10 (Supporting
data). The 10 mM solutions of 1 and 2 in 1:1 v/v 0.01 M Tris
O
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Scheme 2. Synthesis of bis-rhodamine based chemosensors 3e6.

N.R. Chereddy et al. / Dyes and Pigments 95 (2012) 606e613 609
HCleCH3CN pH 7.4 were colorless and did not show any absorbance
in 500e600 nm region. However, addition of either Cu2þ or Fe3þ

ions (50 mM) induced a new peak centered at w 555 nm with
a shoulder peak at 520 nm. Other competitive metal ions did not
influence the absorption characteristics of 1 and 2. The enhance-
ment in the absorbance of 1 upon addition of Cu2þ and Fe3þ were
53 and 57 fold respectively, and indicated that 1 had nearly equal
sensitivity for both Cu2þ and Fe3þ. However, the enhancement
factor of absorbance of 2 upon addition of Cu2þ and Fe3þ were 38
and 154, respectively. This observation indicated that the furan O-
atom in 2 could favor the binding of Fe3þ ions over Cu2þ ions. It was
also clear from Job plot (Supporting data, Fig. S11eS12) that both
chemosensors 1 and 2 formed complexes with Cu2þ and Fe3þ ions
in 2:1 stoichiometry (Supporting data, Scheme 1). Thus, the
observed selectivity for Fe3þ over Cu2þ in the case of 2 could be
explained in terms of the theory of hard and soft acids and bases
(HSAB theory). The furan O-atom in 2 being a stronger hard base
than the pyridine N-atom in 1, the former is likely to form a more
stable complex with Fe3þ (a stronger hard acid as compared to
Cu2þ) than the latter. Moreover, it seems likely that compared to the
chelating ligand of 1 that contains OeNeN combination of donor
atoms, the chelating ligand of relatively rigid molecule 2 containing
OeNeO combination of donor atoms might fit better with Fe3þ

than with Cu2þ.
As regards the origin of metal ion selectivity, higher negative

charge of the ligand and higher number of chelate rings, greatly
increase the stabilities of the metal chelates formed, but decrease
selectivity [53]. Chelate effect which originates from the difference
Fig. 1. Relative sensitivities of chemosensors (10 mM) to Cu2þ (50 mM) and Fe3þ

(50 mM) ions.
in entropy between chelate and non-chelate complex reactions
significantly influences metal ion selective chelation [54]. In the
case of rhodamine derivatives, even a slight change in the steric
requirement or puckering of chelating ring drastically alters metal-
donor atom interactions and completely change the metal ion
selectivity [50,55e60]. Achievement of such steric effects requires
considerable rigidity in the ligand. The rigid positioning of donor
atoms in a ligand (the OeNeO combination of donor atoms in the
present study), can best be obtained in aromatic ligands as
compared with aliphatic analogs.
Fig. 2. Comparison of absorbance (a) and fluorescence (b) characteristics of 5 (10 mM)
in 1:1 v/v 0.01 M Tris HCleCH3CN pH 7.4 in response to different metal ions (50 mM).



Fig. 3. Metal-ion selectivity of 5 (10 mM) in 1:1 v/v 0.01 M Tris HCleCH3CN pH 7.4. The
dark bars represent the fluorescence emission of a solution of 5 (10 mM) and 5 equiv of
the cation of interest. The light bars show the fluorescence change that occurs upon
addition of 1 equiv of Fe(III) to the solution containing 5 (10 mM)and the cation
(50 mM).
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In our previous work we successfully demonstrated that a bisr-
hodamine chemosensor was more sensitive than its monorhod-
amine analog [51]. Based on the observed selectivity for Fe3þ over
Cu2þ in the case of 2 and the results of our previous work, we
speculated that the spatial disposition of OeNeO donor atoms
combined with an appropriate spacer in a bis-rhodamine analog
would result in a sensorwith enhanced sensitivityand selectivity for
Fe3þ ions. Such a chemosensor should form a complexwith Fe3þ ion
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Scheme 3. Perspective mechanism
in 1:1 stoichiometry as opposed to the 2:1 stoichiometry observed
for 2. Accordingly, four bis-rhodamine probes 3, 4, 5 and 6 with
similar coordinating moieties and incremental spacer lengths were
synthesized as shown in Scheme 2 and characterized by NMR and
Mass analyses (Supporting data, Fig. S13eS24). Despite the presence
of two rhodaminemoieties, all four bis-rhodamine probes 3e6 gave
a colorless solution in 1:1 v/v 0.01 M Tris HCleCH3CN pH 7.4 as well
as other organic solvents, indicating their spirocyclic structure. The
non-fluorescent spirocyclic form of 3, 4, 5 and 6 was further
confirmedby 13CNMRanalysis.While all four bis-rhodamineprobes
3e6 (10 mM each) were colorless and insensitive to 50 mM concen-
tration of different metal ions (Liþ, Naþ, Kþ, Csþ, Mg2þ, Ca2þ, Sr2þ,
Cr3þ, Mn2þ, Fe2þ, Co2þ, Ni2þ, Zn2þ, Cd2þ, Hg2þ, and Pb2þ), they
showed the characteristic color only to Fe3þ andCu2þ ions (Fig.1 and
Supporting data, Fig. S25). The UVeVisible absorption patterns of
3e6 were measured in 1:1 v/v 0.01 M Tris HCleCH3CN pH 7.4.
Solutions of all four bis-rhodamine probes 3e6 did not show any
absorbance above 500 nm. But, addition of 50 mM of either Cu2þ or
Fe3þ induced a newpeak centered atw555 nmwith a shoulder peak
at 520 nm. Other competitive metal ions did not influence the
absorption characteristics of 3e6 (Supporting data, Fig. S25).
Predictably, all the four bis-rhodamine probes 3e6 showed nearly
equal enhancement (400e407 fold increase) in the absorbance
intensity upon addition of Fe3þ ions. Under identical conditions the
enhancement factors of absorbance of 3, 4, 5 and 6 for Cu2þwere 99,
209, 49, and 150, respectively. This remarkable reduction in Cu2þ

induced absorbance of bis-rhodamine probes 3e6 could be ascribed
to the low affinity of chelating ligands for Cu2þ which in turnwould
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of 5-Fe3þ complex formation.
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Fig. 4. pH dependant variation in fluorescence intensity of chemosensor 5 (5 mM).
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contribute to the selectivity for Fe3þ ions (Fig.1 and Supporting data,
Fig. S25). Unlike the mono-rhodamine probes 1 and 2, the bis-
rhodamine probes 3e6, formed complexes with Fe3þ and Cu2þ

ions in 1:1 stoichiometry as determined by Job plot (Supporting
data, Fig. S26eS29). As it is apparent that all four bis-rhodamine
probes 3e6 contain the same OeNeO combination of donor
atoms, the selectivity displayed by 5 (Fig. 2a) can only be ascribed to
the spacer length that appears to provide the required chelating ring
size and flexibility and, thereby, favor the formation of the complex
with Fe3þ rather than with Cu2þ.

The fluorescence characteristics of 5 were studied in 1:1 v/v
0.01M Tris HCleCH3CN pH 7.4. In the absence of metal ions, 5 alone
was fluorescently inactive in the rhodamine emission range
(550e650 nm) indicating the existence of the spirocyclic form. The
metal ion dependent variations in the fluorescence emission
intensity of 5 is shown in Fig. 2b. The fluorescence emission of 5
was highly enhanced upon injection of Fe3þ ions. Other competitive
metal ions did not show any considerable influence except Cu2þ

which showed little interference. Interestingly, the fluorescence
enhancement factors of 5 (10 mM) for Fe3þ and Cu2þ ions (10 mM
Fig. 5. Microscopic images of (a) untreated fibroblast cells, (b) cells incubated with 5 (1 mM),
of (d) untreated cells, (e) cells incubated with 5 (1 mM), and (f) cells incubated with 5 (1 m
each) were 446 and 23, respectively (Fig. 2b). Thus, owing to the
reduced affinity of the bis-rhodamine probe 5 for Cu2þ ions, Fe3þ

ions could be selectively detected. The concentration dependant
variations in the fluorescence emission intensity of 5 upon addition
of Fe3þ and Cu2þ ions are shown in the Fig. S30 (Supporting data).
Addition of incremental concentrations of Fe3þ induced a new
emission w579 nm. The limit of detection of 5 for Fe3þ ions was
4 � 10�7 M (5I4 � 10

�7
/
5I0 ¼ 4.25) [50]. The metal competition assay

carried out by adding Fe3þ ions (10 mM) to 5 (10 mM) in the presence
of other metal ions (50 mM) revealed that the commonly coexistent
metal ions did not show any interference on the Fe3þ induced
fluorescence emission of 5 as shown in Fig. 3. Only Cu2þ induces
a little fluorescence emission but addition of Fe3þ to the solution of
5-Cu2þ complex leads to a greater enhancement in the fluorescence
emission of 5 indicating the high binding affinity of 5 for Fe3þ and,
suggests that 5 can be used to detect Fe3þ even in the presence of
Cu2þ at high concentrations. Since the concentrations of Cu2þ ions
are lower than those of Fe3þ ions in biological tissues, and the fact
that 5 displays a lower affinity for Cu2þ ions, the presence of Fe3þ

ions in biological tissues could be selectively detected using 5.
The mechanism for the changes in the fluorescence character-

istics of 5 upon addition of Fe3þ ions is shown in the Scheme 3. As it
would be expected, the Fe3þ binds with 5, and opens the spi-
rolactam ring that results in the fluorescence enhancement and
development of pink color (Supporting data, Fig. S31). The pink
color formed by the addition of Fe3þ ions becomes colorless upon
addition of EDTA, confirming the reversibility of complex formation
and the formation of 5 (Supporting data, Fig. S32). This colorless
solution regains its pink color upon addition of excess Fe3þ ions,
suggesting that the color development is due to the formation 5-
Fe3þ complex and not due to any catalytic action of Fe3þ ions. Such
a complex formation should involve the carbonyl oxygen atom of 5.
The 13C NMR spectra of 5 recorded in the presence of different
concentrations of Fe3þ ions clearly show the involvement of
carbonyl oxygen of 5 in complex formation. The reduction in the
13C-resonance at 66.12 ppm confirms the opening of spirolactam
ring upon complex formation with Fe3þ ions (Supporting data,
Fig. S33). The formation a distorted octahedral complex is sup-
ported by theoretical calculations (Supporting data, Fig. S34) and in
agreement with the observed spectrometric evidence.
(c) cells incubated with 5 (1 mM) and Fe3þ (5 mM), and, fluorescence microscopic images
M) and Fe3þ (5 mM).
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The stability at physiological pH is a prerequisite for any che-
mosensor to be considered for bio-imaging applications. Moreover,
chemosensors containing nitrogen donors are highly sensitive to
environmental pH as the protonation degree of the nitrogen are
strongly dependent on the pH. To verify the stability of chemosensor
5 over a physiologically relevant pH range, fluorescence emission
spectra were recorded in the pH range 1e10. Providentially, che-
mosensor 5 was non-fluorescent within the pH range 5e10, and
exhibited considerable level of fluorescence only below pH 4.0 as
shown in Fig. 4. This observation suggested that the spirolactam ring
in chemosensor5was stable above pH4.0, and chemosensor5 could
be used for sensing Fe3þ ions in biological samples.

As a logical extension, we tested the suitability of chemosensor
5 in the imaging of fibroblast cells exposed to Fe3þ ions. Mouse
fibroblast cell line, NIH 3T3 was incubated with Fe3þ ions (5 mM) in
Dulbecco’s Modified Eagle Medium (DMEM culture medium) for
2 min at 37 �C, and washed with PBS buffer (pH 7.4) to remove
excess metal ions. The cells were then treated with chemosensor 5
(1 mM) in the culture medium for 30 min at 37 �C, and thenwashed
with PBS buffer (pH 7.4) to remove unbound chemosensor. From
a 100 mM stock solution of 5 in 1:1 CH3CN-buffer, 10 mL was
dispersed into 1 mL culture medium to obtain a final concentration
of 1 mM of 5 (0.5% CH3CN in DMEM medium) in order to minimize
the effect of CH3CN. Fibroblast cells treated with both chemosensor
5 and Fe3þ displayed intense red fluorescence as shown in Fig. 5.
The normal and fluorescence microscopic images clearly indicated
that chemosensor 5 could be used to detect live fibroblast cells
exposed to micro molar concentrations of Fe3þ ions. Fibroblast cells
not exposed to Fe3þ ions did not show any fluorescence, suggesting
the suitability of chemosensor 5 for bio-imaging applications.
4. Conclusion

In conclusion, the effect of the number and nature of coordi-
nating sites and spatial disposition of chelating moieties for the
selective recognition of Fe3þ ions are demonstrated. The signifi-
cance of chelating ring size and the rigid positioning of OeNeO
combination of donor atoms in a chelating ligand for Fe3þ selec-
tive chelation is also illustrated. In addition, the protocol for the
synthesis of six new rhodamine based chemosensors is reported.
Taking advantage of the fluorescence properties of the chemo-
sensor 5, a possible application of 5 in the imaging of live fibroblast
cells exposed to toxic Fe3þ ions in aqueous samples is also
presented.
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Appendix A. Supplementary material

The 1H NMR, 13C NMR, and Mass analytical data, and fluores-
cence and absorbance spectra of chemosensors, as well as Job plots
are provided in Supplementary Material. 1H- and 13C NMR spectra
of rhodamine hydrazide and bis-salicyladehyde derivatives are also
included. Supplementary material associated with this article can
be found, in the online version, at http://dx.doi.org/10.1016/j.
dyepig.2012.05.025.
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