Olefin Hydroarylation

Intermolecular Hydroarylation of Unactivated Olefins Catalyzed by Homogeneous Platinum Complexes**

Avery T. Luedtke and Karen I. Goldberg*

The hydroarylation of olefins is a valuable C-C bond forming reaction used to produce alkyl arenes.^[1] Olefin hydroarylation can be catalyzed by Lewis acids, but such reactions proceed through a Friedel-Crafts type mechanism involving an intermediary carbocation. Thus, these reactions give predominantly Markovnikov products, and ortho, meta, and para selectivity is determined by the substituents on the aromatic ring. In contrast, the use of transition-metal catalysts can afford different regioselectivities acting via a mechanism of arene C-H bond activation and olefin insertion.^[1] While in the past transition-metal-catalyzed olefin hydroarylation reactions were primarily limited to activated arenes wherein a chelating functionality on the arene was available to assist and direct the C-H bond activation step,^[1] recently Ir^{III} and Ru^{II} catalysts have demonstrated hydroarylation with unactivated arenes and olefins.^[2,3] Mechanistic and computational studies on these Ir^{III} and Ru^{II} catalysts suggest that the hydroarylation does not proceed through a Friedel-Crafts type activation but through olefin insertion followed by oxidative hydrogen migration. In addition, selectivity for anti-Markovnikov over Markovnikov products (ca. 60:40) was observed. However, significantly higher selectivities and turnover numbers (TONs) are needed to make these processes economical, so a broadly tunable system that can be modified both sterically and electronically is likely needed.

One promising metal for olefin hydroarylation is platinum. There is considerable precedent for both arene C–H bond activation and olefin insertion at Pt^{II};^[4,5] however, attempts at olefin hydroarylation with Pt^{II} have been disappointing.^[6] Selectivities consistent with an electrophilic Friedel–Crafts type pathway were observed using a mixed Ag–Pt catalyst system.^[7] With a related Pt^{II} catalyst, the hydroarylation of norbornene was reported, but other olefins were found to be unreactive.^[8] Finally, tridentate chelation of a tris(pyrazolyl)borate ligand stabilized a potential Pt^{IV} intermediate preventing catalytic turnover.^[5] Herein, we describe the rational development of an effective Pt^{II} system for intermolecular hydroarylation with unactivated arenes

```
    [*] A. T. Luedtke, Prof. K. I. Goldberg
Department of Chemistry, Box 351700
University of Washington, Seattle, WA 98195-1700 (USA)
Fax: (+1) 206-685-8665
E-mail: goldberg@chem.washington.edu
```

- [**] We thank the National Science Foundation (CHE-0137394 and CHE-0719372) for financial support, Dr. W. Kaminsky and Dr. J. Benedict for performing the X-ray structural determinations and Prof. K. McNeill (University of Minnesota) for initial samples of the ligand 3.
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200800524.

and olefins and present mechanistic evidence consistent with a pathway involving aryl–olefin insertion and C–H bond oxidative addition at Pt^{II} . While Markovnikov products are favored, anti-Markovnikov products are observed, and the mechanistic insight gained is promising for rational design of more selective and productive Pt^{II} catalysts for these reactions.

We recently reported that thermolysis of the five-coordinate Pt^{IV} complexes [(LX)PtMe₃] {LX = dtbpp [3,5-di-*tert*butyl-2-(2-pyridyl)pyrrolide] (**1a**) or dppp [3,5-diphenyl-2-(2pyridyl)pyrrolide] (**1b**)} at 85–100 °C in C₆D₆ in the presence of C₂H₄ (9–60 equivalents) led to the release of ethane and methane and formation of Pt^{II} complexes **2a** or **2b**, which contain a cyclometalated substituted pyrrolide group and C₂H₄ (Scheme 1).^[9] This indicates that the (pyridyl)pyrrolide

ligand on Pt^{II} effectively promoted two key reaction steps needed for hydroarylation: C-H bond activation and olefin coordination. The stability of the cyclometalated complexes, however, prevents further reaction. A complex containing a ligand that does not form a stable cyclometalation product may be expected to show different reactivity, and so $[(dmpp)PtMe_3]$ [dmpp=3,5-dimethyl-2-(2-pyridyl)pyrrolide(1c)] was prepared. Deprotonation of dmpp-H $(3)^{[10]}$ with KH in THF yielded green dmpp-K (4). Reaction of 4 with [{ $PtMe_3OTf$ }] ($OTf = SO_3CF_3^-$) in Et_2O produced a yellow solution of 1c.^[11] Although an X-ray crystal structure of 1c reveals a non-centrosymmetric dimeric structure in the solid state with a long bond [2.518(8) Å] between the C4-pyrrolide carbon and a second Pt center (see Figure S16 in the Supporting Information), the ¹H NMR spectrum of **1c** in CD₂Cl₂ at room temperature is consistent with a fluxional five-coordinate complex.^[12]

willey InterScience*

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Remarkably, the change to methyl substituents on the (pyridyl)pyrrolide ligand allowed for the observation of Ptcatalyzed intermolecular hydroarylation of unactivated olefins. Similar to the thermolyses of 1a and 1b, upon thermolysis of **1c** at 100 °C for 5 h in C_6D_6 in the presence of C_2H_4 (70 equiv) ethane and methane (CH_4 and CH_3D) were released. However, rather than a cyclometalated Pt^{II} species, the Pt^{II} product [(dmpp)Pt(CH₂CH₂C₆D₅)(C₂H₄)] (*cis*-[D₅]**5**) was observed in a 48% yield by ¹H NMR spectroscopy (Scheme 1). The configuration (cis) was assigned by NOESY^[11] and refers arbitrarily to the position of the 2-phenethyl ligand with respect to the pyrrolide group. Notably, the product of hydroarylation, C₆D₅CH₂CH₂D $([D_6]ethylbenzene)$, was also observed in the ¹H NMR spectrum, and the concentration of this organic product continued to increase upon further heating for an additional 12 h.

However, complex *cis*- $[D_5]$ **5** decomposed significantly over this time to intractable products. The organic product, $C_6D_5CH_2CH_2D$, was identified by ¹H NMR spectroscopy and GC-MS. When C_6D_{12} was used as the solvent with C_2H_4 and C_6H_6 (0.21M) added as reagents, no evidence of hydroarylation (or hydroalkylation) was observed in the ¹H NMR spectrum. Instead, decomposition of **1c** to Pt⁰ was observed with evidence of numerous unidentified compounds in the ¹H NMR spectrum.

A related Pt^{II} catalyst precursor compound [(dmpp)Pt-(SMe₂)Ph] (trans-6) was prepared by the reaction of 3 with $[{Me_2Pt(\mu-SMe_2)}_2]$ in C₆H₆.^[13] The relative configuration, phenyl trans to pyrrolide, was confirmed by NOESY.[11] Heating a C₆D₆ solution of trans-6 at 100°C caused partial isomerization to cis-6 (greater than 2:1 cis/trans after 133 h).^[11] Upon pressurization of a C₆D₆ solution of trans-6 with C₂H₄ and subsequent heating at 59°C for 14 h, conversion to *cis*- $[D_5]$ **5** (59%) was observed in the ¹H NMR spectrum. Heating of either *cis*- $[D_5]$ **5** or *trans*-**6** under C₂H₄ in C₆D₆ at 100°C produced the hydroarylation product $C_6D_5CH_2CH_2D$. Similar attempts to synthesize [(dmpp)Pt- $\{(C_3H_6)C_6H_5\}(C_3H_6)\}$ by heating *trans*-6 in C₆D₆ at 59 °C under an atmosphere of C_3H_6 were unsuccessful. However, *trans-***6** can act as a precatalyst for the hydroarylation of C₃H₆ with C_6H_6 or $C_6H_5CH_3$ (Table 1).^[14]

Table 1:	Products	and	TONs	for the	hydroar	ylation	of olefins. ^{[a}]
----------	----------	-----	------	---------	---------	---------	---------------------------	---

Arene	Olefin	Cat.	TON	o/m/p	iPr/nPr
C ₆ H ₆	C_2H_4	1c	26		
	C ₃ H ₆		8		86:14
	cyclohexene		8		
	norbornene		10		
C ₆ H₅CH ₃	C_2H_4		4	7:93 ^[b]	
	C₃H₀		2	10:63:27	85:15
C ₆ H₅CF ₃	C_2H_4		2	6:62:32	
C_6H_6	C_2H_4	trans- 6	36		
	C₃H₀		18		85:15
C ₆ H₅CH₃	C_2H_4		12	6:94	
	C₃H ₆		3	9:66:25	84:16

[a] Reaction conditions: $100-110^{\circ}$ C, 1-3 mol% of **1c** or *trans*-**6**, 17-50 h.^[11,17] [b] *meta* and *para* isomers could not be resolved and are listed together.

Angew. Chem. Int. Ed. 2008, 47, 7694–7696

A variety of arene (C₆H₆, C₆H₅CH₃, C₆H₅CF₃) and olefin $(C_2H_4, C_3H_6, \text{ cyclohexene, norbornene})$ combinations were examined with 1c or trans-6 as a precatalyst for hydroarylation. The product distributions were analyzed by GC-MS and GC-FID, and the results are summarized in Table 1 (a more complete listing can be found in Tables S1 and S2 in the Supporting Information).^[11] Hydroarylation of C₂H₄ (390– 410 mm initial concentration) in C_6H_6 to form ethylbenzene gave TONs of 26 (1c) or 36 (trans-6); the higher TON for trans-6 compared to 1c may be due to a more efficient conversion to the active catalyst. Notably, when multiple products are possible, hydroarylation product mixtures contain similar ratios using 1c or trans-6 as a precatalyst. With C₃H₆, both Markovnikov (*i*Pr-Ar) and anti-Markovnikov (nPr-Ar) products are observed, with the former favored 5-6:1. The isomeric distribution meta > para > ortho was obtained for reactions with C_3H_6 in $C_6H_5CH_3$ (o/m/p 9:66:25) and C_2H_4 in $C_6H_5CF_3$ (o/m/p 6:62:32). Both the fact that some anti-Markovnikov product is observed and that a preference for meta and para over ortho functionalization is observed suggest that a C-H bond activation pathway is operative.

A small amount of styrenes (0.1–0.7 TON), presumably formed by β -hydride elimination and also some dialkylation products (0.5–1.6 TON) were observed.^[11] Increasing the amount of C₂H₄ from 220 to 390 mM caused a 1.4-fold increase in TON in the hydroarylation of C₆H₆ using **1c** as the precatalyst. The relative amount of dialkylated products also increased from 4% to 9% of the total TON under these conditions.^[11]

Reaction of C_2H_4 with a 1:1 solution of C_6D_6 and C_6H_6 using **1c** as the precatalyst gave $[D_0]$ ethylbenzene through $[D_6]$ ethylbenzene as observed by GC-MS, with the major product being $[D_3]$ ethylbenzene (Supporting Information, Figure S15). This isotopomer distribution suggests rapid scrambling of H or D from the solvent (C_6H_6 or C_6D_6) into ethylbenzene.^[11]

Stoichiometric reactions of *cis*-5 or *cis*- $[D_5]5$ in C_6D_6 with no C_2H_4 present produced PhCH₂CH₃ or PhCH₂CH₂D, respectively, as determined by ¹H NMR spectroscopy.^[11] Thus, whether or not the C2 carbon of ethylbenzene bears one D or only H is dependent upon whether the phenyl group of the 2-phenethyl ligand of *cis*-5 was deuterated or not.

The mechanism shown in Scheme 2 is consistent with the isotopic labeling results and the regioselectivity described above. A Pt^{II} phenyl ethylene complex, A,^[15] formed in situ from 1c or trans-6, undergoes migratory insertion of olefin into the Pt-Ph bond. Aryl C-H bond cyclometalation of the phenethyl group of **B** forms **C**. Insertion of an olefin into a Pt^{II}-Ph bond followed by orthometalation of the Ph ring has recently been observed upon thermolysis of [Tp^{Me2}PtPh- (C_2H_4)] [Tp^{Me₂}=3,5-dimethyl-tris(pyrazolyl)borate].^[5] The observation of cis-5 and the results of the stoichiometric reactions of cis-5 and cis- $[D_5]5$ are consistent with a similar reaction sequence in this system. However, here a fivecoordinate cyclometalated hydrido Pt^{IV} species C would be formed, and alkyl C-H reductive elimination from fivecoordinate Pt^{IV} structures is well precedented.^[4] Coordination of the solvent to the Pt^{II} product of C-H reductive elimi-

Scheme 2. Proposed mechanism for the hydroarylation of C_2H_4 with C_6H_6 . The ligand L in **B** may be an open site, C_2H_4 (complex **5**), or SMe₂.

nation would produce intermediate **D**, and a rapid equilibrium between arene complexes **D** and **F** would account for the H,D exchange observed in the hydroarylation of C_2H_4 using a 1:1 mixture of C_6H_6 and C_6D_6 . Scrambling of H,D between Ptbound Ph and arene groups has been previously reported.^[16] Replacement of the bound arene of **F** with an olefin releases the product giving **A**. Displacement of the arene in **D** by the olefin would lead to the formation of dialkylated arene products, and β -hydride elimination from **B** would lead to styrene formation.

In summary, Pt-catalyzed intermolecular hydroarylation of unactivated olefins has been rationally developed. Studies of regioselectivity, relative reactivity of substrates, and deuterium labeling are consistent with a mechanism of olefin insertion into a Pt^{II}–aryl bond and aryl C–H oxidative addition at Pt^{II} center. Modification of both the sterics and the electronics of the (pyridyl)pyrrolide ligand to promote greater selectivity for anti-Markovnikov hydroarylation products and to increase the lifetime of the catalysts are currently under investigation.

Received: February 1, 2008 Revised: June 30, 2008 Published online: August 25, 2008

Keywords: arenes \cdot C-H activation \cdot hydroarylation \cdot olefins \cdot platinum

- a) T. Matsumoto, *Catal. Surv. Asia* **2007**, *11*, 31; b) T. B. Gunnoe, L. A. Goj, *Curr. Org. Chem.* **2005**, *9*, 671; c) V. Ritleng, C. Sirlin, M. Pfeffer, *Chem. Rev.* **2002**, *102*, 1731; d) F. Kakiuchi, S. Murai, *Acc. Chem. Res.* **2002**, *35*, 826.
- [2] a) G. Bhalla, J. Oxgaard, W. A. Goddard III, R. A. Periana, Organometallics 2005, 24, 3229; b) J. Oxgaard, R. A. Periana, W. A. Goddard III, J. Am. Chem. Soc. 2004, 126, 11658; c) J. Oxgaard, R. P. Muller, W. A. Goddard III, R. A. Periana, J. Am. Chem. Soc. 2004, 126, 352; d) R. A. Periana, X. Y. Liu, G. Bhalla, Chem. Commun. 2002, 3000; e) T. Matsumoto, R. A. Periana, D. J. Taube, H. Yoshida, J. Mol. Catal. A 2002, 180, 1; f) T. Matsumoto, H. Yoshida, Catal. Lett. 2001, 72, 107; g) T. Matsumoto, D. J. Taube, R. A. Periana, H. Taube, H. Yoshida, J. Am. Chem. Soc. 2000, 122, 7414.
- [3] a) N. A. Foley, M. Lail, J. P. Lee, T. B. Gunnoe, T. R. Cundari, J. L. Petersen, J. Am. Chem. Soc. 2007, 129, 6765; b) N. A. Foley, M. Lail, T. B. Gunnoe, T. R. Cundari, P. D. Boyle, J. L. Petersen, Organometallics 2007, 26, 5507; c) M. Lail, C. M. Bell, D. Conner, T. R. Cundari, T. B. Gunnoe, J. L. Petersen, Organometallics 2004, 23, 5007; d) J. Oxgaard, W. A. Goddard III, J. Am. Chem. Soc. 2004, 126, 442; e) M. Lail, B. N. Arrowood, T. B. Gunnoe, J. Am. Chem. Soc. 2003, 125, 7506.
- [4] a) M. Lersch, M. Tilset, *Chem. Rev.* 2005, 105, 2471; b) Activation and Functionalization of C-H Bonds (Eds.: K. I. Goldberg, A. S. Goldman), ACS Symposium Series 885, Washington, 2004; c) U. Fekl, K. I. Goldberg, *Adv. Inorg. Chem.* 2003, 54, 259.
- [5] M. G. MacDonald, C. N. Kostelansky, P. S. White, J. L. Templeton, Organometallics 2006, 25, 4560.
- [6] A recent success with Pt was reported as this Communication was in press: B. A. McKeown, N. A. Foley, J. P. Lee, T. B. Gunnoe, *Organometallics*, 2008, 27, 4031.
- [7] D. Karshtedt, A. T. Bell, T. D. Tilley, Organometallics 2004, 23, 4169.
- [8] D. Karshtedt, J. L. McBee, A. T. Bell, T. D. Tilley, Organometallics 2006, 25, 1801.
- [9] A. T. Luedtke, K. I. Goldberg, Inorg. Chem. 2007, 46, 8496.
- [10] J. J. Klappa, A. E. Rich, K. McNeill, Org. Lett. 2002, 4, 435.
- [11] See the Supporting Information.
- [12] At low temperature (-53 °C), the ¹H NMR and NOESY spectra of 1c in CD₂Cl₂ are consistent with the proposed dimeric structure.
- [13] For a similar reaction see: C. N. Iverson, C. A. G. Carter, R. T. Baker, J. D. Scollard, J. A. Labinger, J. E. Bercaw, J. Am. Chem. Soc. 2003, 125, 12674.
- [14] Heating a C₆D₆ solution of [{PtMe₃OTf}₄] or [{Me₂Pt(μ -SMe₂)}₂] at 100 °C under C₂H₄ does not produce [D₆]ethylbenzene.
- [15] Evidence has not yet been obtained to indicate the stereochemistry of the proposed intermediates.
- [16] a) B. J. Wik, M. Lersch, A. Krivokapic, M. Tilset, J. Am. Chem. Soc. 2006, 128, 2682; b) C. M. Norris, S. Reinartz, P. S. White, J. L. Templeton, Organometallics 2002, 21, 5649.
- [17] TONs were determined by GC-FID using the relative peak areas versus an internal naphthalene standard. Relative response factors versus the naphthalene standard were determined from authentic samples that are commercially available: ethylbenzene, 2-phenylpropane, 1-phenylpropane, p-ethyltoluene, oethyltoluene, phenylcyclohexane, m-cymene, p-cymene, and ocymene. The relative response factors of the other products were assumed to be unity.