318 Communications synthesis

One-Pot Synthesis of Substituted Homoallylic Alcohols (3-Alkenols) and 1-Deuterio-3-alkenols; II.¹ Extension to Ketone Enolates

José Barluenga,* Flora Alvarez, José M. Concellón, Pablo Bernad, Miguel Yus

Departamento de Química Orgánica, Facultad de Química, Universidad de Oviedo, E-33071 Oviedo, Spain

The reaction of different lithium ketone enolates with α -chloro carbonyl compounds followed by in situ reduction with lithium aluminium hydride or deuteride and final lithiation with lithium powder leads to the corresponding homoallylic or 1-deuterio homoallylic alcohols in a regioselective manner.

In a recent paper¹ we described the preparation of homoallylic and 1,1-dideuteriohomoallylic alkenols (3, $R^3 = R^4 = H$; 4, $R^3 = H$, $R^4 = D$) by successive treatment of different α -chloro carbonyl compounds 1 with the lithium enolate of ethyl acetate (2, $R^3 = H$, $R^4 = OC_2H_5$), lithium aluminium hydride or deuteride and final lithiation with lithium powder. We extend here this reaction to the use of lithium enolates derived from ketones (2).

When several α -chloroaldehydes (1, $R^2 = H$) or ketones (1, $R^2 \neq H$) were allowed to react successively with different ketone

$$R^{1} \xrightarrow{R^{2}} R^{2} + R^{3} \xrightarrow{OLi} R^{4} \xrightarrow{\frac{MgBr_{2}}{THF}} \left[R^{1} \xrightarrow{Cl} R^{2} \xrightarrow{R^{4}} R^{4} \right] \xrightarrow{ElAlX_{4}} ether \\ -60^{\circ}C$$

$$\begin{bmatrix} Cl & R^{3} & X & D & R^{1} & R^{2} & CH & R^{2} & R^{4} & R^{2} & CH & R^{2} & R^{3} & R^{4} & R^{2} & CH & R^{2} & R^{4} & R^{2} & CH & CH & R^{2} & CH & R^$$

enolates 2^2 (obtained *in situ* from the corresponding ketone and lithium diisopropylamine³), lithium aluminium hydride (X = H) and lithium powder, the corresponding homoallylic alcohols 3 were isolated. The use of lithium aluminium deuteride (X = D) instead of lithium aluminium hydride led to the expected deuterated alkenols 4.

The first intermediate in the reaction is the corresponding alcoholate 5, since when the reaction mixture was hydrolyzed after this addition the corresponding chlorohydrin could be isolated. Thus, in the reaction of the lithium acetophenone enolate with 2-chloro-3-methylbutanal the corresponding chlorohydrin 6g was isolated after acid hydrolysis. The *in situ* reduction of the remaining carbonyl group in 5 led to the corresponding intermediate 7, which through lithiation afforded a β -substituted organolithium compound 8. The final spontaneous β -elimination from the unstable species 8 yields, after hydrolysis, the product 3 or 4.

$$\begin{array}{c|c}
C & OH \\
\hline
C & Cl
\end{array}$$

$$\begin{array}{c|c}
C & Cl \\
\hline
R^1 & Cl \\
\hline
R^2 & R^4
\end{array}$$

$$\begin{array}{c|c}
C & R^3 & X \\
\hline
R^1 & Cl \\
\hline
R^2 & R^4
\end{array}$$

When the same process was tried with lithium enolates derived from aldehydes (2, $R^4 = H$) an intractable mixture of reaction products was obtained, probably due to (a) the difficulty of obtaining the enolate⁶ or/and (b) the low stability of the corresponding alcoholate 5.

3-Alkenols 3 and 4; General Procedure:

To a stirred solution of lithium diisopropylamide (1.93 g, 18 mmol) in tetrahydrofuran (30 ml) is added the corresponding ketone at -78 °C under argon, and stirring is continued for 30 min. Anhydrous magnesium bromide (1.84 g, 10 mmol) and the α -chlorocarbonyl compound 1 (10 mmol) in tetrahydrofuran (10 ml) are successively added at -100 °C (bath temperature) for aldehydes or -78 °C for ketones. The mixture is stirred for 1 h, an ether solution of lithium aluminium hydride or deuteride (4.5 mmol) is added, and stirring is continued for 4 h at -60 °C. Lithium powder (0.25 g, 35 mmol) is added and the mixture stirred overnight, allowing the temperature to rise to 20 °C. The mixture is then hydrolyzed with 2 normal hydrochloric acid (10 ml), and extracted with ether (2 × 15 ml). The organic layer is washed with water (10 ml), dried with sodium sulfate, and evaporated (15 torr). The residue is distilled at reduced pressure to afford the alcohol 3 or 4.

Table 1. 3-Alkenols 3 and 4 Prepared

Product	R¹	R ²	R ³	R ⁴	Yield ^a (%)	b.p. (°C)/torr ^b	Molecular Formula ^e or Lit. b.p. (°C)/torr
3a 3b 3c 3d 3e 3f 3g 3h	-(C C ₂ H ₅ <i>i</i> -C ₃ H ₇	CH ₃ H H H ₂) ₃ H ₂) ₄ H H CH ₂) ₄	H H H H H H	CH ₃ CC ₆ H ₅ CC ₆ H ₅	40 (1/1.3) 37 (1/2.3) 55 (1/6) 52 49 50 (1/2.5) 60 (1/5) 64 (1/2.5) ^d	28-30/0.1 46-50/15 33-36/0.1 39-41/0.1 46-50/0.1 43-47/0.01 40-44/0.01 35-39/0.01	C ₇ H ₁₄ O (114.2) 45/6 ⁷ -8.6 -9.6 56/1.75 ¹⁰ -8.6 C ₁₃ H ₁₈ O (190.3) 139/15 ¹¹
4c 4e 4f 4h	C_2H_5	H CH ₂) ₄ — H CH ₂) ₄ —	H H H	CH ₃ CH ₃ C ₆ H ₅ CH ₂) ₄	45 (1/4) 50 49 (1/2.5) 55 (1/2.6) ^d	33-36/0.1 38-42/0.1 43-47/0.01 35-39/0.01	$C_8H_{15}DO$ (129.2) $C_9H_{15}DO$ (141.2) $C_{12}H_{15}DO$ (177.3) $C_{12}H_{19}DO$ (181.3)

^a Yield of isolated product, based on the starting α -chlorocarbonyl compound 1. In parentheses the Z/E ratio from 13 C-NMR analysis.

b Distillation interval.

^c Satisfactory microanalyses obtained: C \pm 0.24, H/D \pm 0.26.

d anti/syn Ratio from 13C-NMR analysis.

No data reported.

Table 2. Spectral Data of 3-Alkenols 3 and 4

Prod-	IR (film) ^a	¹ H-NMR (CCl ₄ + D ₂ O _{capillary}) ^b	¹³ C-NMR (nea		
uct	v (cm ⁻¹)	δ (ppm)	$+ D_2 O_{capillary})^b \delta (ppm)$	MS (E.I.)° m/e (% rel. int.)	
3a	3460 (OH); 3020, 1620 (HC=C)	1.0 (d, 3H, $J = 7$ Hz, CH ₃ CHO); 1.4–1.8 (m, 6H, 2CH ₃ C=C); 1.8–2.2 (m, 2H, CH ₂); 2.8 (s, 1H, OH); 3.5–4.1 (m, 1H, OCH); 5.0–5.5 (m, 1H, CH=C)	14.7, 24.3, 42.8, 51.2, 66. 122.8, 134.2 ^{d.e}	3, 114 (M ⁺ , 1.2), 81 (11), 70 (100), 55 (69), 53 (11), 41 (17) 39 (15), 32 (13)	
3b	3350 (OH); 3020, 1650 (HC=C)	1.0 (t, 3H, $J = 7$ Hz, CH_3CH_2); 1.1 (d, 3H, $J = 7$ Hz, CH_3CH); 1.7–2.3 (m, 4H, 2CH ₂ C=C); 3.6–3.9 (m, 1H, O–CH); 3.7 (s, 1H, OH); 5.4–5.6 (m, 2H, 2CH=C)	14.3, 22.8, 26.2, 42.9, 68. 126.5, 135.0 ^d	2, 114 (M ⁺ , 1.2), 96 (12), 81 (17) 70 (100), 55 (84), 53 (11), 45 (67), 43 (26), 42 (17), 39 (29), 28 (16), 27 (11)	
Зе	3350 (OH); 3020, 1650 (HC=C)	1.0 (d, 6H, $J = 7$ Hz, $2CH_3CH$); 1.1 (d, 3H, $J = 7$ Hz, CH_3CO); 1.7–2.7 (m, 3H, CH_2 and CH_2CH_3); 3.5–3.8 (m, 1H, OCH); 3.6 (s, 1H, OH); 5.3–5.5 (m, 2H, 2CH=C)	23.2, 23.7, 31.7, 43.2, 68. 124.2, 140.5 ^d	The state of the s	
3d	3370 (OH); 3050, 1640 (HC=C)	1.1 (d, 3H, $J = 7$ Hz, CH ₃); 1.5–2.8 (m, 8 H, 4CH ₂); 2.2 (s, 1H, OH); 3.7–4.0 (m, 1H, OCH); 5.3–5.6 (m, 1H, CH=C)	23.5, 24.2, 33.1, 36.0, 41. 66.7, 126.3, 142.2	3, 126 (M ⁺ , 7), 93 (16), 82 (34), 79 (18), 67 (100), 45 (16)	
3e	3370 (OH); 3030, 1660 (HC=C)	1.1 (d, 3 H, <i>J</i> = 7 Hz, CH ₃); 1.5–2.3 (m, 10 H, 5 CH ₂); 2.3–2.6 (m, 1 H, OH); 3.6–3.9 (m, 1 H, OCH); 5.4–5.6 (m, 1 H, CH = C)	23.2, 23.5, 23.7, 26.0, 29.48.9, 66.1, 124.1, 135.6	4, 140 (M ⁺ , 6), 122 (16), 107 (18), 96 (32), 81 (100), 68 (22), 67 (30), 55 (10), 45 (12)	
3f	3450 (OH); 3050, 3020, 1670, 1600, 1490, 790, 700 (HC=C)	0.9 (t, 3 H, <i>J</i> = 7 Hz, CH ₃); 1.7 (s, 1 H, OH); 1.8–2.4 (m, 4 H, 2 CH ₂); 4.4 (t, 1 H, <i>J</i> = 7 Hz, OCH); 5.0–5.6 (m, 2 H, 2 CH = C); 6.8–7.5 (m, 5 H _{arom}) ^f	14.4, 26.2, 43.3, 74.4, 125. 126.6, 127.5, 128.5, 135. 145.3 ^d		
3g	3420 (OH); 3070, 3020, 1680, 1600, 1490, 790, 700 (HC=C)	1.0 (t, 6H, $J = 8$ Hz, 2 CH ₃); 1.2-2.5 (m, 4H, CH ₂ , CHCH ₃ , and OH); 4.8 (t, 1H, $J = 7$ H, OCH); 5.2-5.6 (m, 2H, 2CH=C); 7.0-7.6 (m, 5 H _{arom}) ^f	23.2, 31.7, 43.2, 74.6, 123. 126.8, 127.7, 128.7, 141. 145.6 ^d		
3h	3460 (OH); 3020, 1660 (HC=C)	1.1–1.7 (m, 12H, 6CH ₂); 1.7–2.3 (m, 6H, 2CH ₂ C=C, OH, and CHC=C); 3.2–3.8 (m, 1H, OCH); 5.2–5.5 (m, 1H, CH=C) ^f	23.7, 24.0, 26.1, 26.3, 27.0 31.6, 35.8, 55.7, 71.5, 123.9 140.0 d.c		
4c	3350 (OH); 3020, 1650 (HC=C)	1.0 (d, 6H, <i>J</i> = 7 Hz, 2CH ₃ CH); 1.1 (s, 3 H, CH ₃ CD); 1.7–2.3 (m, 3H, CH ₂ and CHCH ₃); 3.8 (s, 1H, OH); 5.3–5.5 (m, 2H, 2CH = C)	22.9, 23.2, 24.6, 31.7, 43.6 67.5 (t, CD, $J_{CD} = 21 \text{ Hz}$ 124.2, 140.4 ^d), 129 (M ⁺ , 2), 96 (16), 84 (44),	
4e	3370 (OH); 3030, 1660 (HC=C)	1.1 (s, 3H, CH ₃); 1.5–2.3 (m, 10H, 5CH ₂); 2.3–2.6 (m, 1H, OH); 5.4–5.6 (m, 1H, CH =C)	23.3, 23.8, 26.0, 29.4, 48.8 65.9 (t, CD, $J_{CD} = 21 \text{ Hz}$ 124.0, 135.8		
4f	3450 (OH); 3060, 3020, 1670, 1600, 1490, 750, 700 (HC=C)	0.9 (t, 3H, $J = 7$ Hz, CH ₃); 1.8-2.4 (m, 5H, 2CH ₂ and OH); 5.0-5.6 (m, 2H, 2CH =C); 6.8-7.5 (m, 5H _{aron}) ^f	14.4, 26.3, 43.2, 74.0 (t, CE $J_{CD} = 19 \text{ Hz}$), 125.8, 126.7, 127.7, 128.7, 135.5, 145.3 d), 177 (M ⁺ , 1), 108 (100), 80	
4h	3450 (OH); 3030, 1640 (HC=C)	1.1–1.7 (m, 12H, 6CH ₂); 1.7–2.3 (m, 6H, 2CH ₂ C=C, OH, and CHC=C); 5.2–5.5 (m, 1H, CH=C) [†]	23.5, 24.0, 25.9, 26.2, 27.0 31.7, 35.8, 55.8, 71.6 (t, CD $J_{CD} = 21 \text{ Hz}$), 123.8, 140.0 ^d	· · · · · · · · · · · · · · · · · · ·	

^a Recorded on a Perkin-Elmer 298 infrared spectrometer.

(2-Hydroxy-3-chloro-4-methyl)pentyl Phenyl Ketone (6g).

To a stirred solution of lithium disopropylamide (1.93 g, 18 mmol) in tetrahydrofuran (30 ml) is added acetophenone (1.62 g, 15 mmol) at $-78\,^{\circ}$ C under argon and stirring is continued for 30 min. Anhydrous magnesium bromide (1.84 g, 10 mmol) and 2-chloro-3-methylbutanal (1g; 1.21 g, 10 mmol) in tetrahydrofuran (10 ml) are successively added at $-78\,^{\circ}$ C and stirring is continued for 1 h. The mixture is then hydrolyzed with 2 normal hydrochloric acid (10 ml), and extracted with ether (2 × 15 ml). The organic layer is washed with water (10 ml), dried with sodium sulfate, and evaporated (15 torr). The residue is purified by removing of the excess acetophenone in vacuo (0.01 torr); yield: 1.92 g (80%); isomer ratio 5.3:1 (GLC analysis); m.p. 78-80 °C (hexane/ether).

C₁₃H₁₇ClO₂ calc. C 64.86 H 7.12 (240.7) found 64.5 7.3

IR (Nujol): $\nu = 3480$ (OH); 3080, 1600, 1480 (C_6H_5): 1680 cm⁻¹ (C=O).

¹H-NMR (CDCl₃ + D₂O capillary): δ = 1.0, 1.05 (2d, 6 H, J = 6 Hz, 2CH₃); 1.3–1.7 (m, 1 H, CH –CH₃); 2.3–2.6 (m, 2 H, CH₂); 3.3–4.3 (m, 3 H, CH –Cl, CH –O, and OH); 7.55, 8.0 ppm (2 m, 5 H, H_{arom}). ¹³C-NMR (CDCl₃ + D₂O capillary) for the major isomer: δ = 16.7, 21.6, 29.9, 43.3, 70.1, 72.8, 129.1, 129.5, 134.4, 137.5, 201.2 ppm. MS: m/e (% rel. int.) = 204 (M⁺ –Cl, 1), 187 (7). 149 (10), 120 (8). 105 (100), 77 (24), 51 (8).

b Recorded on a Varian FT-80A spectrometer.

c Recorded on a HP-5987A spectrometer.

For the major isomer.

 $^{^{\}rm e}$ In CCl₄ + ${\rm D_2O_{capillary}}$.

In CCl₄ + TMS_{capillary}; recorded on a Varian EM-390 spectrometer.

This paper is dedicated to Prof. Rafael Usón of the University of Zaragoza, Spain, on the occasion of his 60th birthday.

Received: 15 July 1986 (Revised form: 7 October 1986)

- Part I: Barluenga, J., Alvarez, F., Concellón, J.M., Yus, M. Synthesis 1986, 654.
- (2) The best results were obtained when this first step was carried out in the presence of a stoichiometric amount of magnesium bromide (see procedure).
- (3) The use of other basic agents such as potassium or sodium hydride, or sodium amide led to lower yields.
- (4) Barluenga, J., Flórez, J., Yus, M. J. Chem. Soc. Perkin Trans. 1 1983, 3019; and references cited therein.
- (5) See, for example: Barluenga, J., Yus, M., Concellón, J. M., Bernad, P. J. Org. Chem. 1981, 46, 2721.
- (6) March, J. Advanced Organic Chemistry. 3rd ed., John Wiley and Sons, New York, 1985, p. 829.
- (7) Malpass, D.B., Watson, S.C., Scott, G. J. Org. Chem. 1977, 42, 2712.
- (8) Chantegrel, B., Gelin, S. Bull. Soc. Chim. Fr. 1975, 2639.
- (9) Arseniyadis, S., Gore, J., Laurent, A., Roumestant, M. L. J. Chem. Research (S) 1978, 416; (M) 1978, 4616.
- (10) Kropp, P.J., Krauss, H.J. J. Am. Chem. Soc. 1969, 91, 7466.
- (11) Hückel, W., Neunhoeffer, O., Gerche, A., Frank, E. Justus Liebigs Ann. Chem. 1929, 477, 99.