exchange of carbonyl groups. As shown in Scheme III there are several plausible intermediates which would allow for carbonyl group migration between Fe and Rh. We favor the doubly bridged structure F since it is easily achieved from both isomeric C and D and it maintains the favored  $\mu$ - $\eta^4$ , $\eta^3$ -C<sub>7</sub>H<sub>7</sub> bonding functionality. Furthermore, the process is related to the well-established merry-goround mechanism for carbonyl group migration in di- and polynuclear metal carbonyl compounds.<sup>32</sup> An often observed feature in these systems is increased facility for carbonyl group migration upon phosphine substitution.<sup>32,36</sup> This is well illustrated in the present context as well. The parent pentacarbonyl la shows no line broadening in the <sup>13</sup>C NMR spectrum up to 70 °C whereas in 1b this temperature represents the coalescence point with an associated  $\Delta G^*_{343}$  of 15.4 kcal/mol.

### Conclusion

It is apparent from this first reactivity study on 1a that the bridging cycloheptatrienyl moiety is capable of exhibiting a variety of bonding capabilities. This flexible nature can be manifested in two distinct manners. The ability to create coordinative unsaturation is responsible for the facile carbonyl substitution reaction and may promote other reactions as well. The capacity for bonding

(36) Mersalla, J. A.; Caulton, K. G. Organometallics 1982, 1, 274.

Further studies are underway to delineate the scope of the reactivity of 1a. The synthesis of related  $(\mu$ -C<sub>7</sub>H<sub>7</sub>)-MM'(CO)<sub>5</sub> (M = Fe, Ru, Os and M' = Co, Rh, Ir) compounds are also being explored in order to probe the effect of the metal on the structure, fluxionality, and reactivity in this class of molecules.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada and the University of Alberta for financial support of this work and Johnson Matthey for generous loan of rhodium trichloride. F.E. acknowledges a Feodor Lynen research fellowship from the Alexander von Humboldt Foundation, Bonn, West Germany.

**Registry No.** 1a, 51608-48-1; 1b, 100190-09-8; 2a, 91868-00-7; 2b, 91855-30-0; 3a, 91855-31-1; 3b, 91855-32-2; 3c, 91855-33-3; 3d, 91855-34-4; 3e, 100190-10-1; 3f, 100190-11-2;  $Na(C_7H_7)Fe(CO)_3$ , 62313-81-9;  $[RhCl(COD)]_2$ , 12092-47-6; Rh, 7440-16-6; Fe, 7439-89-6.

**Supplementary Material Available:** A table of thermal parameters for 1b (Table VIII) and listings of observed and calculated structure amplitudes for 1b and 3b (31 pages). Ordering information is given on any current masthead page.

# Synthesis, Molecular Structure, Solution Dynamics, and Reactivity of $(\eta$ -C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>M( $\mu$ -PR<sub>2</sub>)<sub>2</sub>Rh( $\eta$ -indenyl) (M = Zr, Hf; R = Et, Ph)<sup>†</sup>

## R. T. Baker\* and T. H. Tulip

Central Research & Development Department, E. I. du Pont de Nemours & Company, Experimental Station, Wilmington, Delaware 19898

#### Received June 13, 1985

The "metal-containing diphosphines",  $Cp_2M(PR_2)_2$  ( $Cp = \eta - C_5H_5$ ; M = Zr, Hf; R = Et, Ph), displace both coordinated ethylenes from  $(\eta - C_2H_4)_2Rh(\eta$ -indenyl), yielding the early-late heterobimetallic complexes  $Cp_2M(\mu-PR_2)_2Rh(\eta$ -indenyl). The molecular structure of  $Cp_2Zr(\mu-PPh_2)_2Rh(\eta$ -indenyl) (1c), determined by X-ray diffraction, consists of edge-shared, pseudotetrahedral 16e Zr(IV) and distorted, square-planar Rh(I) centers with a planar ZrP<sub>2</sub>Rh bridging unit and a Zr. Rh separation of 3.088 (1) Å. The indenyl ligand exhibits a pronounced "slip-fold" distortion toward  $\eta^3$ -coordination and high barriers (14-15 kcal/mol) to indenyl rotation are observed by <sup>1</sup>H DNMR. Addition of CH<sub>3</sub>I to  $Cp_2M(\mu-PEt_2)_2Rh(\eta$ -indenyl) affords the cationic d<sup>0</sup>-d<sup>6</sup> heterobimetallics [ $Cp_2M(\mu-PEt_2)_2Rh(CH_3)(\eta$ -indenyl)]I. Red crystals of 1c are monoclinic,  $P2_1/m$  (no. 11), with two molecules per unit cell of dimensions a = 9.700 (1) Å, b = 18.855 (3) Å, c = 10.185(1) Å, and  $\beta = 112.95$  (1)°. The structure was refined to R = 0.029 and  $R_w = 0.031$  for 2928 observed reflections.

Transition-metal complexes containing the  $\eta$ -indenyl ligand undergo ligand substitution much more readily than their  $\eta$ -cyclopentadienyl analogs due to the stability of the  $\eta^3$  bonding mode in the former, suggested to result from the aromatization of the indenyl benzene ring.<sup>1</sup> The recently reported<sup>2,3</sup> "metal-containing diphosphines", Cp<sub>2</sub>M-(PR<sub>2</sub>)<sub>2</sub> (Cp =  $\eta$ -C<sub>5</sub>H<sub>5</sub>; M = Zr, Hf; R = Et, Ph, cyclohexyl (Cy)), contain both 1e and 3e donor PR<sub>2</sub> ligands. Donation of both phosphorus lone pairs to a second metal center thus creates an electronically unsaturated early metal center in the resulting PR<sub>2</sub>-bridged heterobimetallic com-

plex. We have previously described the binding of various metal carbonyl<sup>4</sup> and  $ML_n^5$  fragments, where M = Ni, Pd,

 <sup>(</sup>a) Hart-Davis, A. J.; Mawby, R. J. J. Chem. Soc. A 1969, 2403. (b)
 White, C.; Mawby, R. J.; Hart-Davis, A. J. Inorg. Chim. Acta 1970, 4, 441.
 (c) Jones, D. J.; Mawby, R. J. Ibid. 1972, 6, 157. (d) Eshtiagh-Hosseini,
 H.; Nixon, J. F. J. Less Common Met. 1978, 61, 107. (e) Caddy, P.; Green,
 M.; O'Brien, E.; Smart, L. E.; Woodward, P. Angew. Chem., Int. Ed. Engl.
 1977, 16, 648; J. Chem. Soc., Dalton Trans. 1980, 962. (f) Caddy, P.;
 Green, M.; Howard, J. A. K.; Squire, J. M.; White, N. J. Ibid. 1981, 400.
 (g) Bottrill, M.; Green, M. Ibid. 1977, 2365. (h) Gal, A. W.; van der
 Heijden, H. Angew. Chem., Int. Ed. Engl. 1981, 20, 978. (i) Diversi, P.;
 Giusti, A.; Ingrosso, G.; Lucherini, A. J. Organomet. Chem. 1981, 205, 239.
 (j) Rerek, M. E.; Ji, L.-N.; Basolo, F. J. Chem. Soc., Chem. Commun.
 1983, 1208. (k) Rerek, M. E.; Basolo, F. J. Am. Chem. Soc.
 1984, 106, 5908. (l) Casey, C. P.; O'Connor, J. M. Organometallics 1985, 4, 384.

<sup>&</sup>lt;sup>†</sup>Contribution no. 3775.

Table I. Elemental Analyses and Melting Point Data

|                  | elemental analyses <sup>a,b</sup> |         |                             |                      |                                                                     |                    |                    |                    |
|------------------|-----------------------------------|---------|-----------------------------|----------------------|---------------------------------------------------------------------|--------------------|--------------------|--------------------|
| <u> </u>         | no.                               | mp, °C  | С                           | Н                    | Р                                                                   | Rh                 | М                  | I                  |
|                  |                                   |         |                             | $Cp_2M(\mu$          | -PR <sub>2</sub> ) <sub>2</sub> Rh(η-indenyl)                       | )                  |                    |                    |
| M = Zr, R = Et   | 1 <b>a</b>                        | 295-297 | 51.97, 52.17<br>(52.50)     | 6.08, 6.11 (6.04)    | 9.91, 10.10 (10.03)                                                 | 16.6, 16.8 (16.66) | 14.8, 14.9 (14.77) |                    |
| M = Hf, R $= Et$ | 1 <b>b</b>                        | 295-297 | 45.77, 45.70<br>(46.00)     | 5.21, 5.23 (5.29)    | 8.68, 8.73 (8.79)                                                   | 14.5, 14.5 (14.60) | 24.6, 24.7 (25.32) |                    |
| M = Zr, R = Ph   | 1c                                | 270-272 | 63.17, 62.88<br>(63.77)     | 4.66, 4.60 (4.61)    | 7.40, 7.51 (7.65)                                                   | 12.7, 12.6 (12.71) | 11.8, 11.7 (11.26) |                    |
| M = Hf, R $= Ph$ | 1d                                | 280285  | 57.79, 57.82<br>(57.57)     | 4.48, 4.53 (4.16)    | 6.53, 6.71 (6.91)                                                   | 11.0, 11.0 (11.47) | 18.4, 18.6 (19.90) |                    |
|                  |                                   |         |                             | $[Cp_{2}M(\mu - PE]$ | t <sub>2</sub> ) <sub>2</sub> Rh(CH <sub>2</sub> )( <i>n</i> -inder | nyl)]I             |                    |                    |
| M = Zr           | 2a                                | 162-165 | $44.12, \ 43.99$<br>(44.27) | 5.28, 5.29 (5.31)    | 7.94, 7.95 (8.16)                                                   | 13.5, 13.5 (13.55) | 12.0, 12.0 (12.01) | 16.6, 16.7 (16.71) |
| M = Hf           | 2b                                | 165-168 | 39.10, 39.13<br>(39.71)     | 4.75, 4.75 (4.76)    | 7.32, 7.17 (7.31)                                                   | 12.2, 11.9 (12.15) | 20.9, 20.2 (21.08) | 14.3, 14.3 (14.99) |

<sup>a</sup> Found; calculated in parentheses. <sup>b</sup>Hf analyses are low due to significant quantities of Cp<sub>2</sub>ZrCl<sub>2</sub> in commercial Cp<sub>2</sub>HfCl<sub>2</sub>.

and Pt, L = diene, alkyne, phosphine, diphosphine, and phosphite, and n = 1 and 2. We now report (i) the binding of the Rh( $\eta$ -indenyl) fragment, (ii) the X-ray structural determination of  $Cp_2Zr(\mu-PPh_2)_2Rh(\eta-indenyl)$ , (iii) the observation of hindered indenyl ligand rotation in solution by <sup>1</sup>H DNMR, and (iv) the oxidative addition of  $CH_3I$  to the Rh(I) center without disruption of the MP<sub>2</sub>Rh bridge system.

#### **Experimental Section**

All operations were conducted in a Vacuum Atmospheres glovebox with continuous nitrogen flush. Solvents were purified by standard techniques<sup>6</sup> and distilled from sodium- or potassium-benzophenone ketyl.  $(\eta$ -Indenyl)Rh $(\eta$ -C<sub>2</sub>H<sub>4</sub> $)_2^{1d,e}$  and Cp<sub>2</sub>M- $(PR_2)_2^{2,4}$  were prepared by literature methods.  $CH_3I$ ,  $CH_3C(O)Cl$ ,  $NH_4PF_6$  (Aldrich), and research purity  $H_2$  and CO (Matheson) were used as received. NMR spectra were recorded on a Nicolet NMC-300-WB (121-MHz <sup>31</sup>P and 76-MHz <sup>13</sup>C) spectrometer. <sup>13</sup>C and <sup>31</sup>P NMR chemical shifts are positive downfield from external SiMe<sub>4</sub> and 85% H<sub>3</sub>PO<sub>4</sub>, respectively. IR spectra were recorded as Nujol mulls between CsI plates on a Perkin-Elmer 983 spectrometer. Elemental analyses were performed by Pascher Mikroanalytisches Labor, Bonn, West Germany. Melting points were determined in sealed, nitrogen-filled capillaries using a Thomas-Hoover apparatus and are uncorrected. Elemental analyses and melting points are listed in Table I, and IR and NMR data are compiled in Tables II-V.

 $Cp_2Zr(\mu-PEt_2)_2Rh(\eta-indenyl)$  (1a). To a solution of 1.199 g (3.0 mmol) of  $Cp_2Zr(PEt_2)_2$  in 60 mL of hexane was added dropwise a solution of 823 mg (3.0 mmol) ( $\eta$ -indenyl)Rh( $\eta$ -C<sub>2</sub>H<sub>4</sub>)<sub>2</sub> in 20 mL of hexane, over 10 min. The solution turned red-brown and slowly precipitated an orange solid. After the solution was stirred for 12 h, the product was filtered off, washed with  $2 \times 10$ mL of cold (-30 °C) pentane, and dried in vacuo, yielding 1.333 g. Concentration of the filtrate to 5 mL yielded a second crop of 270 mg, for a combined yield of 1.603 g (87%). The Hf analogue 1b was prepared similarly by using 1.461 g (3.0 mmol) of Cp<sub>2</sub>Hf(PEt<sub>2</sub>)<sub>2</sub>, affording 1.814 g of product (86%). Red crystals of both complexes were obtained in good yield from tolueneheptane

 $Cp_2Zr(\eta-PPh_2)_2Rh(\eta-indenyl)$  (1c). To a solution of 1.775 g (3.0 mmol) of Cp<sub>2</sub>Zr(PPh<sub>2</sub>)<sub>2</sub> in 40 mL of THF was added dropwise a solution of 823 mg (3.0 mmol) of  $(\eta$ -indenyl)Rh $(\eta$ - $C_2H_4)_2$  in 40 mL of THF, over 10 min. The resulting dark red

#### Table II. Infrared Spectral Data<sup>a</sup>

- $Cp_2Zr(\mu-PEt_2)_2Rh(\eta-indenyl)$  (1a): 1316 (m), 1228 (m), 1208 (w), 1168 (w), 1146 (w), 1120 (w), 1066 (w), 1030 (s), 1022 (s), 1010 (s, sh), 975 (m), 924 (m), 885 (m), 877 (m), 851 (w), 843 (w), 823 (m, sh), 800 (s, sh), 791 (vs), 780 (vs), 765 (s), 736 (s), 721 (s), 673 (m), 633 (m), 438 (s), 398 (w), 386 (w, sh), 338 (m), 280 (w), 248 (w) cm<sup>-1</sup>
- $Cp_2Hf(\mu-PEt_2)_2Rh(\eta-indenyl)$  (1b): 1315 (m), 1227 (m), 1208 (w), 1167 (w), 1158 (w), 1145 (w), 1120 (w), 1067 (w), 1029 (s), 1021 (s), 1010 (s), 976 (m), 924 (m), 884 (m), 875 (m), 851 (w), 844 (w), 828 (m), 805 (s, sh), 796 (vs), 780 (vs), 763 (vs), 735 (vs), 721 (s), 672 (m), 633 (m), 610 (w), 437 (s), 400 (w), 340 (w), 302 (w, sh), 286 (m), 246 (w) cm<sup>-1</sup>
- $Cp_2Zr(\mu-PPh_2)_2Rh(\eta-indenyl)$  (1c): 1579 (m), 1564 (w), 1322 (w), 1310 (m), 1223 (m), 1213 (w), 1185 (w), 1174 (w), 1154 (w), 1120 (w), 1087 (w), 1070 (m, sh), 1062 (m), 1017 (s), 975 (m), 928 (m), 920 (m, sh), 892 (w), 854 (w), 843 (w), 831 (m), 811 (s), 790 (s), 781 (s), 736 (vs), 705 (s), 696 (s), 618 (w), 515 (s), 484 (s), 459 (m), 442 (w), 432 (w), 400 (m), 375 (w), 341 (w), 325 (w), 273 (w), 241 (w) cm<sup>-1</sup>
- $Cp_2Hf(\mu-PPh_2)_2Rh(\eta-indenyl)$  (1d): 1577 (m), 1562 (w), 1321 (w), 1309 (m), 1222 (w), 1231 (w), 1184 (w), 1173 (w), 1153 (w), 1119 (w), 1087 (w), 1068 (w, sh), 1061 (m), 1015 (s), 978 (m), 926 (m), 890 (w), 845 (w, sh), 836 (m), 814 (s), 787 (s, sh), 782 (vs), 731 (vs), 703 (s, sh), 694 (s), 619 (w), 515 (s), 483 (s), 459 (m), 443 (m), 433 (m), 399 (m), 375 (w), 337 (w), 302 (w), 275 (w), 239 (w)  $cm^{-1}$
- $[Cp_2Zr(\mu-PEt_2)_2Rh(CH_3)(\eta-indenyl)]I$  (2a): 3049 (m), 1541 (w), 1323 (w), 1237 (m), 1192 (w), 1183 (w), 1149 (m), 1121 (w), 1037 (s), 1020 (s), 975 (m), 946 (w), 926 (w), 892 (w), 861 (m), 850 (m), 838 (m), 828 (s), 809 (vs), 778 (m), 758 (s), 733 (s), 684 (s), 639 (m), 546 (w), 512 (w), 459 (m), 423 (w), 404 (w), 387 (w), 364 (w), 339 (w), 283 (w), 250 (w) cm<sup>-1</sup>
- $[Cp_2Hf(\mu-PEt_2)_2Rh(CH_3)(\eta-indenyl)]I$  (2b): 3050 (m), 1540 (w). 1324 (w), 1237 (m), 1213 (w), 1192 (w, sh), 1184 (m), 1170 (w), 1151 (m), 1123 (w), 1036 (s), 1020 (s), 975 (m), 945 (w), 931 (w), 920 (w), 890 (w), 863 (m, sh), 854 (m), 841 (s, sh), 833 (s), 812 (vs), 777 (m), 758 (s), 731 (s), 684 (m), 640 (m), 545 (w), 512 (s), 456 (m), 421 (m), 404 (m), 386 (w), 336 (w), 315 (w), 281 (w), 247 (w) cm<sup>-1</sup>

<sup>a</sup> Recorded as mineral oil mulls between CsI plates. Underlined absorptions are assigned to M-P vibrations.

solution was stirred for 3 days and evaporated to dryness. The residue was stirred with 25 mL of hexane, filtered off, and dried in vacuo, yielding 2.191 g of the title product (90%). The Hf analogue 1d was prepared similarly by using 2.037 g (3.0 mmol) of Cp<sub>2</sub>Hf(PPh<sub>2</sub>)<sub>2</sub>, affording 2.415 g of product (90%). Red crystals of both complexes were obtained in good yield from THF-heptane.

 $[Cp_2Zr(\mu-PEt_2)_2Rh(CH_3)(\eta-indenyl)]I$  (2a). To a solution of 93 mg (0.15 mmol) of 1a in 10 mL of hexane was added 21 mg (0.15 mmol) of CH<sub>3</sub>I. The solution lightened and precipitated a yellow powder. After the solution was stirred for 12 h, the

Baker, R. T.; Whitney, J. F.; Wreford, S. S. Organometallics 1983,
 1049; Inorg. Chem., submitted for publication.
 Wade, S. R.; Wallbridge, M. G. H.; Willey, G. R. J. Chem. Soc.,

Dalton Trans. 1983, 2555.

<sup>(4)</sup> Baker, R. T.; Tulip, T. H.; Wreford, S. S. Inorg. Chem. 1985, 24, 1379

<sup>(5)</sup> Baker, R. T.; Fultz, W. C. Organometallics, to be submitted for publication.

<sup>(6)</sup> Gordon, A. J.; Ford, R. A. "The Chemist's Companion"; Wiley-Interscience: New York, 1972.

| Table | , III.            | 301-MHz                                   | H   | NMR     | Data <sup>a</sup> |
|-------|-------------------|-------------------------------------------|-----|---------|-------------------|
| 1.    | Cp <sub>2</sub> N | $\Lambda(\mu-\mathrm{PEt}_2)_2\mathrm{I}$ | Rh( | η-inder | nyl)              |

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ср                                      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19<br>26, 4.65                          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16<br>!5, 4.65                          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| <b>Hf</b> 1d $05^{f}$ 7.46 7.29 7.20 6.56 6.13 5.67 (2.5) 6.30 (2.5) 4.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83                                      |
| $-60^{s}  7.81, 7.11  7.44, 7.27  7.32, 7.25  6.59, 5.96  5.61  6.45  5.25, 4.85$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .65                                     |
| 3. $[Cp_2M(\mu-PEt_2)_2Rh(CH_3)(\eta-indenyl)]I^i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
| Et indenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| M no. $CH_2$ $CH_3^b$ $H_{4-7}^c$ $H_{1,3}^d$ $H_2^e$ $CH_3^j$ $C_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F                                       |
| Zr 2a 3.08 (mult), 2.15 (mult), 1.73 (mult), 1.37 1.46 (17.0, 7.5), 1.29 7.42, 7.21 6.48 5.79 (3.0) -0.60 (3.5, 3.0) 5.61, 4.89 (ov mult) (13.5, 7.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| Hf 2b $3.17 \text{ (mult)}, 2.07 \text{ (mult)}, 1.74 \text{ (mult)}, 1.31 1.45 (17.0, 7.5), 1.27 7.42, 7.21 6.43 5.75 (3.0) -0.58 (3.5, 2.5) 5.59, 4.90 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 + 0.58 (3.5, 2.5) 1.59 +$ | tr, <sup>3</sup> J <sub>Р-Н</sub><br>;) |
| 4. DNMR Data for Hindered Indenyl Rotation <sup>k</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |

| complex    | T <sub>c</sub> , K | $\Delta \nu$ , Hz | $k_{T_{c}},  \mathrm{s}^{-1}$ | $\Delta G^*_{T_c}$ , kcal/mol |  |
|------------|--------------------|-------------------|-------------------------------|-------------------------------|--|
| la         | 320                | 181               | 402                           | $15.0 \pm 0.2$                |  |
| 1 <b>b</b> | 317                | 182               | 404                           | $14.8 \pm 0.2$                |  |
| 1c         | 291                | 77                | 171                           | $14.0 \pm 0.3$                |  |
| 1d         | 285                | 59                | 131                           | $13.9 \pm 0.3$                |  |

<sup>a</sup> Chemical shifts in ppm. Abbreviations: d = doublet; tr = triplet; br = broad; ov = overlapping; mult = multiplet. <sup>b</sup>d tr; <sup>3</sup>J<sub>P-H</sub>, <sup>3</sup>J<sub>H-H</sub> in Hz in parentheses. <sup>c</sup>Multiplets due to AA'BB' spin system. <sup>d</sup>d; <sup>3</sup>J<sub>H-H</sub> in Hz in parentheses. <sup>e</sup>tr; <sup>2</sup>J<sub>Rh-H</sub>  $\approx$  <sup>3</sup>J<sub>H-H</sub> in Hz in parentheses. <sup>f</sup>Run in p-dioxane-d<sub>8</sub>. <sup>g</sup>Run in THF-d<sub>8</sub>. <sup>h</sup>Virtual triplets with <sup>3</sup>J<sub>H-H</sub>  $\approx$  7-8 Hz. <sup>i</sup>Run in CD<sub>3</sub>CN at 25 °C. <sup>j</sup>tr d; <sup>3</sup>J<sub>P-H</sub>, <sup>2</sup>J<sub>Rh-H</sub> in Hz in parentheses.  ${}^{k}T_{c}$  = coalescence temperature ±5 K;  $\Delta \nu$  = chemical shift difference of exchanging sites ±5 Hz.

| Table IV, 121-MIRZ "P NMR | Data |
|---------------------------|------|
|---------------------------|------|

|                      | no.                                  | chem shift, <sup>b</sup> ppm |
|----------------------|--------------------------------------|------------------------------|
| $Cp_0M(\mu-P)$       | R.).Rh(n-ir                          | ndenvl)                      |
| M = Zr, R = Et       | 1a                                   | 181.6 (129)                  |
| M = Hf, R = Et       | 1b                                   | 169.1 (125)                  |
| M = Zr, R = Ph       | 1 <b>c</b>                           | 177.3 (137)                  |
| M = Hf, R = Ph       | 1 <b>d</b>                           | 169.7 (133)                  |
| $[Cp_2M(\mu-PEt_2)]$ | $_{2}\mathbf{Rh}(\mathbf{CH}_{3})(1$ | η-indenyl)]I                 |
| M = Zr               | 2a                                   | 158.5 (82)                   |
| M = Hf               | 2b                                   | 145.4 (81)                   |

<sup>a</sup>Run at 25 °C with proton decoupling; 1a-d in THF-d<sub>8</sub> and 2a,b in CD<sub>3</sub>CN. <sup>b</sup>All resonances are doublets;  $J_{Rh-P}$  in Hz in parentheses.

product was filtered off, washed with 5 mL of hexane, and dried in vacuo, yielding 80 mg of the title complex (71%). The Hf analogue 2b was prepared similarly by using 106 mg (0.15 mmol) of 1b, affording 93 mg of product (74%).

X-ray Data Collection and Structure Solution and Refinement. Red crystals of complex 1c suitable for diffraction studies were grown by slow diffusion of *n*-heptane into a THF solution of the complex. A crystal of appropriate dimensions (see Table VI for crystallographic details) was encapsulated in a glass capillary under N<sub>2</sub> and mounted on a Syntex P3 diffractometer. The crystal proved to be suitable based on  $\Omega$  scans having peak widths at half-height of 0.24° at -100 °C. Preliminary photographic examination revealed the space group and approximate cell constants. The latter were refined to the values shown in Table VI by using 47 reflections chosen from diverse regions of reciprocal space.

Intensity data were collected by using the  $\Omega$  scan technique (0.90° scan range, scan rates of 8-20° min<sup>-1</sup>, and total background time = scan time). The intensities of three standard reflections were monitored at 200 reflection intervals and were found to vary insignificantly. The data were corrected for absorption by using the DIFABS program<sup>7</sup> and processed by using counting statistics and a p value of 0.02 to derive standard deviations.

The solution and refinement were accomplished by using local modifications of the SDP-Plus software supplied by the Enraf-Nonius Corp. The Zr and Rh atoms were located in an originremoved Patterson synthesis, and the positions of the remaining non-hydrogen atoms were determined by the usual combination of structure factor and Fourier syntheses and least-squares refinements. The function minimized was  $\sum w(|F_0| - |F_c|)^2$ , where  $|F_0|$  and  $|F_c|$  are the observed and calculated structure amplitudes where  $w = 1/\sigma^2(F_0)$ . The atomic scattering factors used were taken from the compilations of Cromer and Waber,<sup>9a</sup> and the anomalous dispersion terms used were Cromer's.9b All hydrogen atoms were located, placed in idealized positions [d(CH) = 0.95 Å], and included in the final refinements as a fixed contribution  $(B_{\rm H} =$ 4.0  $Å^2$ ). Final convergence led to the agreement indices shown in Table VI where  $R = \sum ||F_0| - |F_c|| / \sum |F_0|$  and  $R_w = \sum w(|F_0|)$  $|F_c|^2 / \sum wF_0|^{1/2}$ . The highest peak in a final difference map was adjacent to the Zr atom and corresponded to  $1.58 \text{ e} \text{ Å}^{-3}$ . Other residual peaks were less than 0.35 e  $Å^{-3}$ .

Selected bond lengths and angles are compiled in Table VII. Positional and equivalent isotropic thermal parameters for the non-hydrogen atoms are collected in Table VIII. Positional and thermal parameters for the idealized hydrogen atoms (Table IX), general temperature factors (Table X), dihedral angles between calculated planes (Table XI), and structure factor amplitudes

<sup>(7)</sup> Walker, N.; Stuart, D. Acta Crystallogr., Sect. A: Found. Crystallogr. 1983, A39, 159. (8) Corfield, P. W.; Doedens, R. J.; Ibers, J. A. Inorg. Chem. 1967, 6,

<sup>197.</sup> 

<sup>(9) &</sup>quot;International Tables for X-ray Crystallography"; Kynoch Press: Birmingham, England, 1974; Vol IV: (a) Table 2.2B; (b) Talbe 2.3.1.

|    |          |                  |                 |                            |                   |                       |                        | 1. (                  | $Dp_2M($             | $\mu$ -PEt <sub>2</sub> )                                         | 2Rh        | (η-indeny      | l) <sup>b</sup>          |                       |                      |                      |                            |
|----|----------|------------------|-----------------|----------------------------|-------------------|-----------------------|------------------------|-----------------------|----------------------|-------------------------------------------------------------------|------------|----------------|--------------------------|-----------------------|----------------------|----------------------|----------------------------|
|    |          |                  |                 |                            |                   |                       |                        |                       | - <u></u>            | inde                                                              | nyld       | 1              |                          |                       |                      | ethyl <sup>e</sup>   |                            |
|    | М        | no.              |                 | $\mathbf{C}\mathbf{p}^{c}$ |                   | C(1,5                 | 3) <sup>f</sup>        | C                     | (2) <sup>g</sup>     |                                                                   | C(5        | ,6)            | C(4,7)                   | C(3a,7a)              | CH <sub>2</sub>      |                      | CH <sub>3</sub>            |
|    | Zr<br>Hf | la<br>1b         | 99<br>98        | .5 (172<br>.4 (173         | 2, 7)<br>3, 7)    | 73.9 (2.5<br>73.7 (2, | , <b>169</b> )<br>172) | 96.9<br>97.1          | (7, 168)<br>(4, 172) | $   \begin{array}{ccc}     8) & 11 \\     2) & 11   \end{array} $ | 3.8<br>3.8 | (161)<br>(161) | 120.7 (159<br>120.5 (159 | 121.3           121.1 | 25.0 (12<br>24.9 (12 | 9) 1<br>7) 1         | 3.6 (129)<br>3.6 (127)     |
|    |          |                  |                 |                            |                   |                       |                        | 2. C                  | $p_2M(p_2)$          | u-PPh <sub>2</sub> )                                              | $_2$ Rh    | (η-indeny      | 1) <sup>b</sup>          |                       |                      |                      |                            |
|    |          |                  |                 |                            |                   |                       | i                      | indenyl <sup>d</sup>  |                      |                                                                   |            |                |                          |                       | ohenyl               |                      |                            |
| Μ  | no.      | Ср               |                 | C(1                        | 1,3) <sup>f</sup> | C(2)                  | g                      | C(5,                  | 6)                   | C(4,7                                                             | )          | C(3a,7a)       | ) ipso <sup>h</sup>      | ortho <sup>i</sup>    | m                    | eta <sup>j</sup>     | para                       |
| Zr | lc       | 103.3 (<br>174)  | br,             | 77.4<br>17:                | (3.5,<br>3)       | 100.3 (6.5            | , 170)                 | 117.5 (               | 157)                 | 123.2 (1                                                          | 57)        | 127.1          | 145.5 (2                 | (6, 16) 134.6         | )) 127.9             | (5, 159)             | 127.5 (159)                |
| Hf | ld       | 102.2 (<br>174)  | br,             | 76.9<br>17                 | (3.5,<br>1)       | 100.4 (5.5            | , 173)                 | 117.6 (               | 157)                 | 123.0 (1                                                          | 57)        | 127.5          | 145.6 (2                 | 21) 135.0 (4, 16)     | ) 127.8              | (4, 160)             | 127.6 (160)                |
|    |          |                  |                 |                            |                   |                       | ;                      | B. [Cp <sub>2</sub> ] | <b>Μ(μ-Ρ</b>         | Et <sub>2</sub> ) <sub>2</sub> Rh                                 | (CH        | 3)(η-inde      | $nyl)]I^k$               |                       |                      |                      |                            |
|    |          |                  |                 |                            |                   |                       |                        | i                     | ndeny                | ] <sup>d</sup>                                                    |            |                |                          |                       |                      | eth                  | nyl                        |
| М  | no.      |                  | Cp <sup>c</sup> |                            |                   | C(1,3) <sup>f</sup>   | C                      | (2) <sup>g</sup>      | C                    | (5,6)                                                             | (          | C(4,7)         | C(3a,7a)                 | $CH_{3}^{l}$          |                      | $H_2^m$              | CH <sub>3</sub>            |
| Zr | 2a       | 104.4 (<br>103.3 | 175,<br>3 (17   | 7),<br>'5, 7)              | 79.6              | (3.5, 179)            | 110.3                  | (6, 177)              | 122.                 | 6 (167)                                                           | 128        | 3.2 (162)      | 119.8                    | -9.8 (26, 2.5, 13     | 9) 24.5              | (17, 132             | ) 13.9 (128)               |
| Hf | 2b       | 103.7 (<br>102.8 | 176,<br>5 (17   | 6),<br>(6.6)               | 79.3              | (180)                 | 110.0                  | (179)                 | 122.                 | 6 (167)                                                           | 128        | 8.0 (163)      | 119.5                    | -9.8 (26, 2.5, 13     | 17.2 (<br>39) 24.4 ( | (14, 128<br>(8, 130) | ) 10.8 (128)<br>13.9 (128) |
|    |          | 1010             |                 | -,-,                       |                   |                       |                        |                       |                      |                                                                   |            |                |                          |                       | 17.1 (               | 9, 131)              | 10.9 (127)                 |

Table V. 75.6-MHz <sup>13</sup>C NMR Data<sup>a</sup>

<sup>a</sup>Chemical shifts in ppm. Numbering scheme:

<sup>b</sup>Run in THF-d<sub>8</sub> at 60 °C with gated decoupling. <sup>c</sup>Doublet of virtual quintets:  $J_{CH}$ ,  ${}^{2}J_{CH} \approx {}^{3}J_{CH}$  in Hz in parentheses. <sup>d</sup> $J_{CH}$  in Hz in parentheses;  ${}^{2}J_{CH}$  of 5-8 Hz was also observed. <sup>e</sup>Broad,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublet of triplets;  $J_{Rh-C} \approx {}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  $J_{Rh-C} \approx {}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  ${}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  ${}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  ${}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  ${}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  ${}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  ${}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  ${}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  ${}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  ${}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  ${}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  ${}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  ${}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  ${}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  ${}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets;  ${}^{2}J_{P-C}$ ,  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets; {}^{2}J\_{P-C},  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets; {}^{2}J\_{P-C},  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets; {}^{2}J\_{P-C},  $J_{CH}$  in Hz in parentheses. <sup>f</sup>Doublet of doublets; {}^{2}J\_{P-C},  $J_{CH}$  in Hz in parentheses. triplet of quartets;  $J_{\text{Rb-C}}$ ,  ${}^{2}J_{\text{P-C}}$ ,  $J_{\text{CH}}$  in Hz in parentheses. "Doublet of triplets;  $J_{\text{P-C}}$ ,  $J_{\text{CH}}$  in Hz in parentheses.

| Table | VI.  | Summary   | of | X-rav | <b>Diffraction Data</b> |  |
|-------|------|-----------|----|-------|-------------------------|--|
| ranc  | V 4. | o ummar y | υı | A-Lay | Dilliaction Data        |  |

|                                      | •                                                   |
|--------------------------------------|-----------------------------------------------------|
| complex                              | $(\eta^5 - C_5 H_5)_2 Zr[\mu - P(C_6 H_5)_2]_2$     |
|                                      | $Rh(\eta - C_9H_7)$ (1c)                            |
| formula                              | C <sub>43</sub> H <sub>37</sub> P <sub>2</sub> RhZr |
| fw                                   | 809.85                                              |
| space group                          | $C_{2h}^2 - P_{2_1}/m$ (no. 11)                     |
| a, Å                                 | 9.700 (1)                                           |
| b, Å                                 | 18.855 (3)                                          |
| c, Å                                 | 10.185 (1)                                          |
| $\beta$ , deg                        | 112.95 (1)                                          |
| V, Å <sup>3</sup>                    | 1715.3 (6)                                          |
| Ζ                                    | 2                                                   |
| $\rho$ (calcd), g cm <sup>-3</sup>   | 1.568                                               |
| cryst dimens, mm                     | $0.19 \times 0.25 \times 0.29$                      |
| temp, °C                             | -100                                                |
| radiatn                              | Mo Kα (0.71069Å) from                               |
|                                      | graphite monochromator                              |
| $\mu,  {\rm cm}^{-1}$                | 8.94                                                |
| absorptn correctn factors            | 0.86-1.07; av 0.99                                  |
| $2\theta$ limits, deg.               | 4.0-55.0                                            |
| total no. of unique observns         | 4065                                                |
| data, $F_0^2 > 3\sigma(\bar{F}_0^2)$ | 2928                                                |
| final no. of variables               | 219                                                 |
| R                                    | 0.029                                               |
| $R_{\mathbf{w}}$                     | 0.031                                               |
| error in obsvn of unit wt, electrons | 1.296                                               |

(Table XII) are available as supplementary material.

#### **Results and Discussion**

Synthesis of  $Cp_2M(\mu - PR_2)_2Rh(\eta - indenyl)$ . The reaction of  $Cp_2M(PR_2)_2$  with  $(\eta$ -indenyl) $Rh(\eta$ - $C_2H_4)_2$  in hexane or THF liberates ethylene, affording the new heterobimetallic complexes  $Cp_2M(\mu-PR_2)_2Rh(\eta-indenyl)$ (1a-d) in excellent yield. The products are red-orange to brown-orange, air-sensitive crystalline solids which are soluble in nonpolar organic solvents (1c,d are only slightly soluble in alkanes). Monitoring the reactions by <sup>31</sup>P NMR spectroscopy showed the reactions to be quantitative, although formation of 1c,d was slow (ca. 2 days) and reaction with  $Cp_2M(PCy_2)_2$  was still not clean after 1 week. Complexes 1a-d were characterized by full elemental analysis and IR and <sup>1</sup>H, <sup>31</sup>P, and <sup>13</sup>C NMR spectroscopy and, for 1c, by single-crystal X-ray diffraction.



Molecular Structure of  $Cp_2Zr(\mu-PPh_2)_2Rh(\eta$ indenyl) (1c). The molecular structure of 1c, shown in Figure 1, consists of edge-shared pseudotetrahedral 16e Zr(IV) and distorted square-planar Rh(I) centers with a planar ZrP<sub>2</sub>Rh bridge system and a Zr...Rh separation of 3.088 (1) Å. A crystallographic mirror plane contains the Zr and Rh atoms and bisects the indenyl and cyclopentadienyl ligands. The indenyl ligand exhibits a pronounced "slip-fold" distortion<sup>10</sup> relative to a planar,  $\eta^5$ indenyl ligand,<sup>11,12</sup> such that the Rh-C distances to the

<sup>(10)</sup> Mingos, D. M. P. In "Comprehensive Organometallic Chemistry"; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Ox-ford, 1982; Vol. 3, Chapter 19. (11) (a) Trotter, J. Acta Crystallogr. 1958, 11, 35. (b) Webb, N. E.; Marsh, R. A. Ibid. 1967, 22, 382. (c) Allen, S. R.; Baker, P. K.; Barnes, S. G.; Green, M.; Trollope, L.; Manojlovic-Muir, L.; Muir, K. W. J. Chem. Soc., Dalton Trans. 1981, 873. (d) Allen, S. R.; Baker, P. K.; Barnes, S. G.; Bottril, M.; Green, M.; Orpen, A. G.; Williams, I. D.; Welch, A. J. Ibid. 1983, 927.

| Table VI | . Selected           | Distances                             | (A) a | and A  | Angles                  | (deg) in |
|----------|----------------------|---------------------------------------|-------|--------|-------------------------|----------|
|          | Cp <sub>2</sub> Zr(µ | -PPh <sub>2</sub> ) <sub>2</sub> Rh(n | -C.F  | H7) (1 | <b>c</b> ) <sup>a</sup> |          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bond I           | Distances                     |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|------------------|
| Rh-Zr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.088 (1)        |                               |                  |
| Rh–P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.264 (1)        | Zr-P                          | 2.590 (1)        |
| Rh-C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.249 (4)        | Zr-C(31-33)                   | 2.512-2.540 (4)  |
| Rh-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.242 (3)        | Zr-C(41-43)                   | 2.495 - 2.550(4) |
| Rh-C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.469 (3)        |                               |                  |
| D. 0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 000 (0)        | D ((11)                       | 1.040 (0)        |
| P-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.838 (3)        | P-C(11)                       | 1.842 (3)        |
| C(1-5)-C(2-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.382-1.406      | (5)                           |                  |
| C(11-15)-C(12-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i) 1.377–1.402 ( | (5)                           |                  |
| C(21)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.415 (4)        | C(23)-C(24)                   | 1.395 (4)        |
| C(22) - C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.456 (4)        | C(24) - C(25)                 | 1.382 (4)        |
| $C(22) = C(23)^{\prime}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 443 (4)        | C(25) = C(25)'                | 1 408 (4)        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.110 (1)        | (10)                          | 1.100 (1)        |
| C(31-33)-C(32-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i) 1.410–1.414 ( | (4)                           |                  |
| C(41-43)-C(42-43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i) 1.400-1.408 ( | (4)                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bond             | Angles                        |                  |
| Zr-Rh-P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55.33 (2)        | P-Rh-P'                       | 110.66 (3)       |
| Zr-Rh-C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 151.6 (1)        | P-Rh-C(21)                    | 120.04 (4)       |
| $7_{r-Bh-C(22)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 148 63 (8)       | P-Rh-C(22)                    | 93.81 (8)        |
| C(21) = Dh = C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26 79 (0)        | $D_{D_{1}}$                   | 154 89 (8)       |
| C(21) = MI = C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.72 (8)        | $C(22) = Rh = C(22)^{\prime}$ | 61.3(2)          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.00 (0)        |                               | 01.05 (2)        |
| Rh-Zr-P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45.98 (2)        | P-Zr-P                        | 91.95 (3)        |
| Rh-Zr-C(31-33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 89.9-138.9 (1)   | P-Zr-C(31-33)                 | 82.6-136.5 (1)   |
| Rh-Zr-C(41-43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.6-134.0 (1)   | P-Zr-C(41-43)                 | 80.5-133.6 (1)   |
| Rh-P-Zr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78.70 (2)        | Zr-P-C(1)                     | 118.67 (9)       |
| Rh-P-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 114.99 (9)       | Zr-P-C(11)                    | 129.40 (9)       |
| Rh-P-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111.48 (9)       | C(1) - P - C(11)              | 101.9 (1)        |
| <b>P_C(1)_C(9)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 5 (9)        | $P_{-}C(11)_{-}C(19)$         | 110.6 (9)        |
| P = O(1) = O(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.0(2)         | P = O(11) = O(12)             | 119.0 (2)        |
| P = C(1) = C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121.1(2)         | P = U(11) = U(10)             | 123.2 (2)        |
| C(2) - C(1) - C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118.3 (3)        | C(12) - C(11) - C(16)         | 117.0 (3)        |
| C-C-C(Ph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.0-121.1 (3)  |                               |                  |
| Rh-C(21)-C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71.4 (2)         | Rh-C(22)-C(21)                | 71.9 (2)         |
| C(22)-C(21)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107.8 (4)        | Bh-C(22)-C(23)                | 80.7 (2)         |
| C(22)'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20110 (1)        |                               | 0001 (2)         |
| C(22) = C(23) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 106.8 (2)        | C(21) = C(22) = C(23)         | 108 7 (3)        |
| C(99)/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.0 (2)        | O(21) O(22) O(20)             | 100.7 (0)        |
| C(20) $C(20)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 199.9 (9)        |                               |                  |
| C(22) = C(23) = C(23 | 100.2 (0)        |                               |                  |
| 0(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                               |                  |
| C-C-C-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.0-121.1 (3)  |                               |                  |
| (benzenoid)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                               |                  |
| C-C-C(Cn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107 5-109 5 (4)  |                               |                  |
| U-U-U(Up)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107.0-108.0 (4)  |                               |                  |

<sup>a</sup> The prime indicates symmetry-related atoms.



(42) C (41)

Figure 1. Molecular structure of  $(\eta - C_5H_5)_2 Zr(\mu - PPh_2)_2 Rh(\eta - indenyl)$  (1c). Only the ipso carbon atoms of the phenyl rings are shown, and hydrogen atoms are omitted for clarity.

quaternary carbons (C(23), C(23')) are >0.2 Å longer than those to the "allylic" carbons (C(22), C(22'));  $\Delta MC = 0.23$ 



**Figure 2.** <sup>1</sup>H DNMR of  $(\eta$ -C<sub>5</sub>H<sub>6</sub>)<sub>2</sub>Zr( $\mu$ -PPh<sub>2</sub>)<sub>2</sub>Rh( $\eta$ -indenyl) (1c) in THF- $d_8$ .

Å. The dihedral "fold" angle between the allyl and arene planes is 8.5° and the "hinge" angle about the C(22)–C(22') vector is 10.6°, with the arene folded away from the Rh center. Although similar distortions have been observed in other rhodium- and iridium-indenyl complexes,<sup>13</sup> 1c contains the most distorted indenyl ligand yet observed crystallographically,<sup>14,34</sup> with the exception of the  $\eta^3$ -indenyl ligand in (CO<sub>2</sub>)W( $\eta^5$ -indenyl)( $\eta^3$ -indenyl)<sup>12</sup> in which  $\Delta MC = 0.72$  Å and the "fold" angle is 26°.

Spectroscopic Characterization and Hindered Indenyl Ligand Rotation. The 300-MHz <sup>1</sup>H NMR spectra of complexes 1a-d at 25 °C contain sharp resonances for the indenyl ligand protons and broad resonances for the cyclopentadienyl and PR<sub>2</sub> protons. The series of <sup>1</sup>H DNMR spectra of 1c, shown in Figure 2, show that there are two types of phenyl and cyclopentadienyl proton environments at the low-temperature limit, as expected from the observed solid-state molecular structure. At the high-temperature limit, the effective symmetry is  $C_{2v}$ , due to rapid rotation of the indenyl ligand about the Rh-Zr vector. Similarly, for 1a,b there are two cyclopentadienyl

<sup>(12)</sup> Nesmeyanov, A. N.; Ustynyuk, N. A.; Makarova, L. G.; Andrianov, V. G.; Struchkov, Yu. T.; Andrae, S.; Ustynyuk, Yu. A.; Malyugina, S. G. J. Organomet. Chem. 1978, 159, 189.

<sup>(13) (</sup>a) Al-Obaidi, Y. N.; Green, M.; White, N. D.; Bassett, J. M.;
Welch, A. J. J. Chem. Soc., Chem. Commun. 1981, 494. (b) Al-Obaidi,
Y. N.; Baker, P. K.; Green, M.; White, N. D.; Taylor, G. E. J. Chem. Soc.,
Dalton Trans. 1981, 2321. (c) Al-Obaidi, Y. N.; Green, M.; White, N. D.;
Taylor, G. E. Ibid. 1982, 319. (d) Green, M.; Jeffery, J. C.; Porter, S. J.;
Razay, H.; Stone, F. G. A. Ibid. 1982, 2475. (e) Green, M.; Howard, J.
A. K.; Porter, S. J.; Stone, F. G. A.; Tyler, D. C. Ibid. 1984, 2553. (f)
Faller, J. W.; Crabtree, R. H.; Habib, A. Organometallics 1985, 4, 929.

<sup>(14)</sup> For  $[Rh(CO)(\eta-indenyi)]_2(\mu-C=CH_2)$ ,  $\Delta MC = 0.19$  Å; the fold and hinge angles average 9.0 and 8.0°, respectively.<sup>13c</sup> For  $[IrH(PPh_3)_2(\eta-indenyi)]BF_4$ ,  $\Delta MC = 0.19$  Å; the fold and hinge angles are 7.6 and 6.0°, respectively.<sup>13f</sup>

Table VIII. Positional Parameters and Their Estimated Standard Deviations

| atom  | x           | у          | z           | $B, Å^2$  | atom  | x           | у           | z          | <i>B</i> , Å <sup>2</sup> |
|-------|-------------|------------|-------------|-----------|-------|-------------|-------------|------------|---------------------------|
| Rh    | 0.31972 (3) | 0.250      | 0.64577 (3) | 1.292 (6) | C(15) | 0.2329 (4)  | -0.0227 (2) | 0.8107 (4) | 2.98 (8)                  |
| Zr    | 0.000       | 0.250      | 0.41166(4)  | 1.386 (8) | C(16) | 0.2340(3)   | 0.0206(2)   | 0.7014 (3) | 2.27(7)                   |
| Р     | 0.18637(7)  | 0.15123(4) | 0.54808 (8) | 1.39 (1)  | C(21) | 0.5701(4)   | 0.250       | 0.7157(5)  | 2.2(1)                    |
| C(1)  | 0.2675 (3)  | 0.0949 (2) | 0.4492 (3)  | 1.49 (6)  | C(22) | 0.5280 (3)  | 0.1894(2)   | 0.7731(3)  | 2.05 (7)                  |
| C(2)  | 0.3994 (3)  | 0.1149(2)  | 0.4349(3)   | 1.76 (6)  | C(23) | 0.4843(3)   | 0.2117(2)   | 0.8883(3)  | 1.79 (6)                  |
| C(3)  | 0.4569(3)   | 0.0742(2)  | 0.3539 (3)  | 1.98 (6)  | C(24) | 0.4416(3)   | 0.1748(2)   | 0.9850 (3) | 2.29 (7)                  |
| C(4)  | 0.3849 (3)  | 0.0130(2)  | 0.2866(3)   | 2.09 (7)  | C(25) | 0.4000(4)   | 0.2127(2)   | 1.0799(3)  | 2.71(8)                   |
| C(5)  | 0.2525(3)   | -0.0074(2) | 0.2998 (3)  | 2.09 (7)  | C(31) | -0.1077 (4) | 0.250       | 0.6025 (5) | 2.10 (9)                  |
| C(6)  | 0.1943 (3)  | 0.0331(2)  | 0.3793 (3)  | 1.84 (6)  | C(32) | -0.1657(3)  | 0.1891(2)   | 0.5177(3)  | 2.07 (6)                  |
| C(11) | 0.1792(3)   | 0.0899 (2) | 0.6861(3)   | 1.56(6)   | C(33) | -0.2595 (3) | 0.2126(2)   | 0.3803(4)  | 2.38(7)                   |
| C(12) | 0.1258(3)   | 0.1140(2)  | 0.7878(3)   | 2.13 (7)  | C(41) | 0.1258(5)   | 0.250       | 0.2396 (5) | 2.9(1)                    |
| C(13) | 0.1234(3)   | 0.0697 (2) | 0.8962 (3)  | 2.63(7)   | C(42) | 0.0329 (4)  | 0.1898(2)   | 0.2049 (3) | 2.63 (7)                  |
| C(14) | 0.1762(4)   | 0.0012(2)  | 0.9076 (4)  | 2.79 (8)  | C(43) | -0.1162 (4) | 0.2127(2)   | 0.1505 (3) | 2.45 (7)                  |

<sup>a</sup> Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as  $\binom{4}{3}[a^2B(1,1) + b^2B(2,2) + c^2B(3,3) + ab(\cos \gamma)B(1,2) + ac(\cos \beta)B(1,3) + bc(\cos \alpha)B(2,3)]$ .





 $\Delta MC = d_{MC3a, 7a} - d_{MC1,3}$  (Å) in parentheses

**rigure 3.** Correlation of <sup>13</sup>C NMR chemical shift difference,  $\Delta\delta(C)$ , with indenyl ligand hapticity: complex 1, Fe(ind)<sub>2</sub>;<sup>17</sup> 2, [Co(ind)<sub>2</sub>]<sup>+,17</sup> 3, [Rh( $\eta$ -C<sub>5</sub>Me<sub>5</sub>)(ind)]<sup>+,29</sup> 4, Co[P(OEt)<sub>3</sub>]<sub>2</sub>(ind);<sup>1i</sup> 5, Co(1,5-COD)(ind);<sup>30</sup> 6, Rh(duroquinone)(ind);<sup>31,32</sup> 7, [IrH(PPh<sub>3</sub>)<sub>2</sub>(ind)]<sup>+,13</sup> 8, [Rh(Me)(PMe<sub>3</sub>)<sub>2</sub>(ind)]<sup>+,32</sup> 9, [Cp<sub>2</sub>Zr( $\mu$ -PEt<sub>2</sub>)<sub>2</sub>Rh(Me)(ind)]<sup>+</sup> (**2a**); 10, Ir(1,5-COD)(ind);<sup>33,34</sup> 11, Rh( $\mu$ -C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>(ind);<sup>1d,32</sup> 12, [Rh(ind)]<sub>2</sub>-( $\mu$ -CO)( $\mu$ -1,3-CHD);<sup>13a</sup> 13, [Rh(CO)(ind)]<sub>2</sub>( $\mu$ -C=CH<sub>2</sub>);<sup>13c</sup> 14, Rh(CO)<sub>2</sub>(ind);<sup>1k</sup> 15, Rh(CN-t-Bu<sub>2</sub>)<sub>2</sub>(ind);<sup>23</sup> 16, Rh(PMe<sub>3</sub>)<sub>2</sub>(ind);<sup>23</sup> 217, Cp<sub>2</sub>Zr( $\mu$ -PEt<sub>2</sub>)<sub>2</sub>Rh(ind) (1a); 18, Cp<sub>2</sub>Zr( $\mu$ -PEt<sub>2</sub>)<sub>2</sub>Ir(ind);<sup>35</sup> 19, Cp<sub>2</sub>Zr( $\mu$ -PPh<sub>2</sub>)<sub>2</sub>Rh(ind) (1c); 20, Ni(ind)<sub>2</sub>;<sup>17</sup> 21, [PdCl(ind)]<sub>2</sub>;<sup>36</sup> 22, Ir-(PMe<sub>2</sub>Ph)<sub>3</sub>(ind)<sup>34</sup> (COD = cyclooctadiene and CHD = cyclohexadiene).  $\Delta$ MC value for complex 1 is for Ru(ind)<sub>2</sub><sup>11b</sup> as X-ray data for Fe(ind)<sub>2</sub><sup>11a</sup> are of insufficient accuracy.

and four methylene proton environments at low temperature, which average to one and two unique environments, respectively, at 90 °C. Application of the Eyring equation<sup>15</sup> for two-site exchange of the cyclopentadienyl protons gives the following values of the free energy of activation:  $\Delta G^*_{T_c}$ = 15.0 ± 0.2, 14.8 ± 0.2, 14.0 ± 0.3, and 13.9 ± 0.3 kcal/mol, respectively, for 1a–d. The only other report<sup>16</sup> of hindered indenyl rotation is for the thermally unstable heterobimetallic complex ( $\eta$ -mesityl)Cr(CO)( $\mu$ -CO)<sub>2</sub>Rh(CO)( $\eta$ -indenyl), for which  $\Delta G^*_{T_c}$  = 10.8 ± 0.2 kcal/mol. It was suggested that the magnitude of the observed barrier is a result of the "slip-fold" distortion of the  $\eta$ -indenyl ligand.

The <sup>13</sup>C NMR spectra of **1a-d** are consistent with the above analysis and suggest that the "slip-fold" distortion of the coordinated indenyl ligand persists in solution. Kohler<sup>17</sup> has noted that the hapticity of the indenyl ligand

can be assessed spectroscopically by comparing the NMR chemical shifts of the five-membered ring carbon atoms in the metal complex with those of indene; for  $\eta^3$ -indenyl ligands C(1-3) are shielded while C(3a,7a) are not. For more quantitative comparisons, we have calculated the chemical shift difference,  $\Delta\delta(C) = \delta(C(\eta \text{-indenyl})) - \delta(C \text{-}$ (indenyl sodium)), for those  $d^6$  and  $d^8$  complexes for which <sup>13</sup>C NMR data are available (Figure 3). The  $\Delta\delta(C)$  values for C(3a,7a) correlate well with the hapticity of the indenyl ligand for those examples for which structural and/or theoretical results are also available.  $\Delta\delta(C(3a,7a)) = -20$ to -40 ppm for planar  $\eta^5$ -indenyl, -10 to -20 ppm for distorted  $\eta^5$ -indenyl, and +5 to +30 ppm for  $\eta^3$ -indenyl ligands. The values for 1a-d range from 0 to -10 ppm, again pointing to a severely distorted  $\eta^5$ -indenyl ligand. While we may speculate that the severity of the "slip-fold" distortion is responsible for the large observed barriers to indenyl ligand rotation, more structural and theoretical

<sup>(15)</sup> Martin, M. L.; Martin, G. J.; Delpeuch, J.-J. "Practical NMR Spectroscopy"; Heyden: Philadelphia, 1980; Chapter 8, p 339.
(16) Barr, R. D.; Green, M.; Marder, T. B.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1984, 1261.

<sup>(17)</sup> Kohler, F. H. Chem. Ber. 1974, 107, 570.

The <sup>31</sup>P NMR spectra of complexes 1a-d consist of a doublet at 170–180 ppm ( $J_{Rh-P} = 125-137$  Hz), in good accord with other  $Cp_2M(\mu-PR_2)_2M'L_n$  complexes.<sup>4,6,19,20</sup> The low value of  $J_{Rh-P}$  is typical for  $Rh(\mu-PR_2)M'$  bridges.<sup>21-23</sup>

The IR spectra of 1a-d contain absorptions due to cyclopentadienyl,<sup>24,25</sup> indenyl,<sup>25</sup> and PR<sub>2</sub> ligands.<sup>2</sup> The only absorptions that change significantly going from Zr to Hf complexes are observed below 400 cm<sup>-1</sup> (Table II) and presumably involve M-P vibrations.<sup>24,26</sup>

Synthesis and Characterization of  $[Cp_2M(\mu PEt_2)_2Rh(CH_3)(\eta$ -indenyl)]I. Werner and Feser<sup>27</sup> showed that  $Rh(PMe_3)_2(\eta$ -indenyl) undergoes oxidative addition reactions with  $CH_3I$  and  $CH_3C(0)Cl$ , affording the cationic Rh(III) complexes  $[RhR(PMe_3)_2(\eta-indenyl)]^+$  $(R = CH_3, C(O)CH_3)$ . Addition of 1 equiv of  $CH_3I$  to complexes 1a,b in benzene led to precipitation of the yellow 1:1 adducts in quantitative yield. Elemental analysis and infrared and NMR spectroscopic characterization showed the adducts to be iodide salts of the  $d^0-d^6$ heterobimetallic cations  $[Cp_2M(\mu-PEt_2)_2Rh(CH_3)(inde-$ 

(18) A combined theoretical (EHMO), X-ray structural, and DNMR spectroscopic (with the  $\eta$ -1-Me-indenyl ligand) study is presently underway: Marder, T. B.; Calabrese, J. C.; Roe, D. C.; Tulip, T. H., to be submitted for publication.

(19) Stelzer, O.; Unger, E. Chem. Ber. 1977, 110, 3430. Johannsen, G.;
 Stelzer, O. Ibid. 1977, 110, 3438.
 (20) Targos, T. S.; Rosen, R. P.; Whittle, R. R.; Geoffroy, G. L. Inorg.

(20) Targos, 1. S.; Rosen, R. F., Winder, E. E., Courtey, C. Lenne, Chem. 1985, 24, 1375.
(21) Kreter, P. E.; Meek, D. W. Inorg. Chem. 1983, 22, 319.
(22) Breen, M. J.; Geoffroy, G. L. Organometallics 1982, 1, 1437.
Breen, M. J.; DeBrosse, C. W.; Duttera, M. R.; Geoffroy, G. L.; Morrison, E. D.; Roberts, D. A.; Shulman, P. M.; Steinmetz, G. R.; Whittle, R. R. Ibid. 1983, 2, 846. Burkhardt, E. W.; Mercer, W. C.; Geoffroy, G. L. Inorg.

Ibid. 1983, Z. 846. Burkhardt, E. W.; Mercer, W. C.; Geolfroy, G. L. Inorg. Chem. 1984, 23, 1779.
(23) Jones, R. A.; Wright, T. C.; Atwood, J. L.; Hunter, W. E. Or-ganometallics 1983, 2, 470. Jones, R. A.; Wright, T. C. Ibid. 1983, 2, 1842.
Atwood, J. L.; Hunter, W. E.; Jones, R. A.; Wright, T. C. Inorg. Chem.
1983, 22, 993. Jones, R. A.; Lasch, J. G.; Norman, N. C.; Stuart, A. L.; Wright, T. C.; Whittlesey, B. R. Organometallics 1984, 3, 114. Chandler, D. J.; Jones, R. A.; Stuart, A. L.; Wright, T. C. Ibid. 1984, 3, 1830.
(24) Nakamoto, K. N. "Infrared and Raman Spectra of Inorganic and Coordination Compounds" 3rd ed: Wiley-Interscience: New York, 1978:

Coordination Compounds", 3rd ed.; Wiley-Interscience: New York, 1978; pp 330-335.

(25) Samuel, E.; Bigorgne, M. J. Organomet. Chem. 1971, 30, 235.
 (26) Ferraro, J. R. "Low-Frequency Vibrations of Inorganic and Co-

ordination Compounds"; Plenum Press: New York, 1971; pp 257-261. (27) Werner, H.; Feser, R. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1980, 35B, 689.

nyl)]I (2a,b). The Rh-CH<sub>3</sub> moiety was characterized by a doublet of triplets at  $\delta$  -0.6 ( $J_{\rm HRh} \approx {}^{3}J_{\rm HP}$  = 3 Hz) in the <sup>1</sup>H NMR and a quartet of doublets of triplets at -10 ppm  $(J_{CH} = 139, J_{CRh} = 26, \text{ and } {}^2J_{CP} = 2.5 \text{ Hz})$  in the <sup>13</sup>C NMR. The <sup>31</sup>P NMR spectra of **2a** (**2b**) in CD<sub>3</sub>CN consisted of a doublet at 158.5 (145.4) ppm with  $J_{PRh} = 82$  (81) Hz. Although 1a,b do not react with 1 atm of  $H_2$  or CO or with  $CH_3C(O)Cl$ , reactions are observed with  $CH_3C(O)Br$  and with NH<sub>4</sub>PF<sub>6</sub> which alter the MP<sub>2</sub>Rh bridge system without complete disruption.<sup>28</sup> These studies will appear separately.

Acknowledgment. We wish to thank S. A. Hill and L. F. Lardear for excellent technical assistance, Dr. T. B. Marder for useful discussions, and Dr. J. S. Merola and Professors R. A. Crabtree and J. W. Faller for communication of results prior to publication.

Registry No. 1a, 100113-58-4; 1b, 100113-59-5; 1c, 100113-60-8; 1d, 100113-61-9; 2a, 100113-62-0; 2b, 100113-63-1; Cp<sub>2</sub>Zr(PEt<sub>2</sub>)<sub>2</sub>, 86013-23-2;  $(\eta$ -indenyl)Rh $(\eta$ -C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>, 63428-46-6; Cp<sub>2</sub>Hf(PEt<sub>2</sub>)<sub>2</sub>, 86013-26-5; Cp<sub>2</sub>Zr(PPh<sub>2</sub>)<sub>2</sub>, 86013-25-4; Cp<sub>2</sub>Hf(PPh<sub>2</sub>)<sub>2</sub>, 86013-28-7.

Supplementary Material Available: Tables of non-hydrogen atom thermal parameters (Table IX), idealized hydrogen atom positions (Table X), plane data (Table XI), and a listing of observed and calculated structure factor amplitudes (Table XII) and the data (Table XIII) for Figure 3 (23 pages). Ordering information is given on any current masthead page.

(28) Other examples of reactions at  $PR_2$  bridges which do not lead to fragmentation to mononuclear species include: Carty, A. J. Pure Appl. Chem. 1982, 113, 54; Adv. Chem. Ser. 1982, No. 196, 163. Collman, J. P.; Rothrock, R. K.; Finke, R. G.; Moore, E. J.; Rose-Munch, F. Inorg. Chem. Rothrock, R. K.; Finke, R. G.; Moore, E. J.; Rose-Munch, F. Inorg. Chem. 1982, 21, 146. Klingert, B.; Werner, H. J. Organomet. Chem. 1983, 252, C47. Yu, Y.-F.; Galluci, J.; Wojcicki, A. J. Am. Chem. Soc. 1983, 105, 4826. Yu, Y.-F.; Chau, C.-N.; Wojcicki, A.; Calligaris, M.; Nardin, G.; Balducci, G. Ibid. 1984, 106, 3704. Shyu, S.-G.; Wojcicki, A. Organo-metallics 1984, 3, 809. Henrick, K.; Iggo, J. A.; Mays, M. J.; Raithby, P. R. J. Chem. Soc., Chem. Commun. 1984, 209. Rosenberg, S.; Whittle, R. D. Conference, C. J. L. Am. Chem. Soc. 1984, 106, 5934. R.; Geoffroy, G. L. J. Am. Chem. Soc. 1984, 106, 5934.

(29) White, C.; Thompson, S. J.; Maitlis, P. M. J. Chem. Soc., Chem. Commun. 1976, 409.

(30) Bonneman, H.; Samson, M. Canada Patent 1 130 289 (Studiengesellschaft Kohle m.b.H.), 1982.

(31) Aleksandrov, G. G.; Struchkov, Yu. T. Zh. Strukt. Khim. 1971, 12, 120.

(32) Marder, T. B., private communication.
 (33) Sievert, A. C. Ph.D. Thesis, University of California, 1980.

(34) The X-ray structure of  $Ir(PMe_2Ph)_3(\eta^3$ -indenyl) has recently been determined:  $\Delta MC = 0.80$  Å and the "fold" angle is 28.5°. Merola, J. S., private communication.

 (35) Baker, R. T., unpublished results.
 (36) Nakasuji, K.; Yamaguchi, M.; Murata, I.; Tatsumi, K. Nakamura, A. Organometallics 1984, 3, 1257.