Chelate-Controlled Synthesis of *rac*- and *meso*-Me₂Si(3-^tBu-C₅H₃)₂ZrCl₂

Matthew D. LoCoco and Richard F. Jordan*

Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637

Received September 22, 2003

The reaction of the chelated bis-amide complex $Zr{PhN(CH_2)_3NPh}Cl_2(THF)_2$ (2) with $Li_2[Me_2Si(3-^tBu-C_5H_3)_2]$ yields *meso*-Me_2Si(3-^tBu-C_5H_3)_2Zr{PhN(CH_2)_3NPh} (*meso*-3) in >98% yield. In contrast, the reaction of $Zr{Me_3SiN(CH_2)_3NSiMe_3}Cl_2(THF)_2$ (4) or the related mono-THF adduct $Zr{Me_3SiN(CH_2)_3NSiMe_3}Cl_2(THF)$ (5) with $Li_2[Me_2Si(3-^tBu-C_5H_3)_2]$ yields *rac*-Me_2Si(3-^tBu-C_5H_3)_2Zr{Me_3SiN(CH_2)_3NSiMe_3} (*rac*-6) in quantitative NMR yield and 89% isolated yield. X-ray crystallographic analyses show that the $Zr{RN(CH_2)_3NR}$ chelate ring in *rac*-6 has a pronounced twist conformation, while that in *meso*-3 has a flatter, envelope conformation. It is proposed that the conformations of the $Zr{RN(CH_2)_3NR}$ chelate rings in the stereodetermining transition states for addition of the second Cp^- ring in these reactions are similar to those in the metallocene products and control the diastereoselectivity. *meso*-3 and *rac*-6 are converted to *meso*-Me_2Si(3-^tBu-C_5H_3)_2ZrCl_2 (*meso*-1) and *rac*-1, respectively, by reaction with HCl in Et_2O.

Introduction

The application of structurally complex *ansa*-zirconocenes, particularly bis-indenyl systems, as stereoselective catalysts has been studied extensively.¹ This field would be advanced significantly by the development of efficient syntheses of *rac*-metallocenes derived from simple, easily accessible, bis-Cp⁻ ligands. In this regard, the synthesis of *rac*-Me₂Si(3-^tBu-C₅H₃)₂ZrCl₂ (*rac*-1) has attracted considerable interest.² This metallocene has been prepared by salt elimination and amine elimination reactions, which produce *rac/meso* mixtures,^{3,4} and by photochemical isomerization of *rac*-1/meso-1 mixtures.⁵ To date, the most efficient route to 1, developed by Brintzinger and co-workers, comprises reaction of Sn(NMe₂)₄ with Me₂Si(3-^tBu-C₅H₃)₂ to yield a silastannaindacene, followed by transmetalation with ZrCl₄ to produce *rac*-1 (>98% de, 60% overall isolated yield).⁶ Here we describe highly stereoselective syntheses of *rac*-1 and *meso*-1.

We recently reported a highly selective, "chelate controlled" synthesis of *rac-ansa*-bis(indenyl) zirconocenes, which is based on the reaction of lithium *ansa*-bis(indenyl) salts with the chelated bis-amide compound $Zr{PhN(CH_2)_3NPh}Cl_2(THF)_2$ (**2**) and is shown in Scheme 1.⁷ This procedure works well for *rac*-(SBI)Zr{PhN-(CH_2)_3NPh} and 2-Me-substituted and 2-Me-4-aryl-substituted derivatives thereof, as well as for *rac*-(EBI)- $Zr{PhN(CH_2)_3NPh}$.⁷

The key to Scheme 1 is the use of the [PhN(CH₂)₃N-Ph]²⁻ ligand to control diastereoselectivity. The Zr{PhN- $(CH_2)_3NPh$ chelate rings in 2 and several $(C_5R_5)_2Zr$ -{PhN(CH₂)₃NPh} metallocenes adopt twist conformations which place the N-Ph groups on opposite sides of the N-Zr-N plane, as shown in Scheme 1.7 This arrangement complements the rac-metallocene structure but strongly disfavors the meso isomer. The mechanism of $[X(indenyl)_2]^{2-}$ substitution of the chloride and THF ligands of **2** is unknown and may be complicated by ion-pairing, solvation, and other factors.³ However, the simple model in Scheme 1 provides useful insights. We postulate that, while rotation around the Zr-(indenyl centroid) in the mono-indenyl intermediate A can occur, the bridge (X) must be close to the "back" position in the transition state for the second indenyl

^{*} Corresponding author.

 ^{(1) (}a) Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143. (b) Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem. Rev. 2000, 100, 1253. (c) Hoveyda, A. H.; Morken, J. P. Angew. Chem., Int. Ed. Engl. 1996, 35, 1262. (d) Halterman, R. L. In Synthesis of Chiral Titanocene and Zirconocene Dichlorides; Togni, A., Halterman, R. L., Eds.; Metallocenes: Synthesis, Reactivity, Applications: Wiley-VCH: Weinheim, 1998; Vol. 1, Chapter 8.

⁽²⁾ For polymerization studies using 1 see: (a) Suzuki, N.; Yamaguchi, Y.; Fries, A.; Mise, T. Macromolecules 2000, 33, 4602. (b) Mise, T.; Miya, S.; Yamazaki, H. Chem. Lett. 1989, 1853. (c) Röll, W.; Brintzinger, H. H.; Rieger, B.; Zolk, R. Angew. Chem., Int. Ed. Engl. 1990, 29, 279. For other examples of metallocenes based on ansa-bis-(3-R-C₅H₃) ligands see: (d) Sutton, S. C.; Nantz, M. H.; Parkin, S. R. Organometallics 1993, 12, 2248. (e) Collins, S.; Hong, Y.; Taylor, N. J. Organometallics 1990, 9, 2695. (f) Chen, Z.; Halterman, R. L. Organometallics 1994, 13, 3932. (g) Schnutenhaus, H.; Brintzinger, H. H. Angew. Chem., Int. Ed. Engl. 1979, 18, 777. (h) Kuntz B. J.; Ramachandran, R.; Taylor N. J.; Guan, J.; Collins, S. J. Organomet. Chem. 1995, 497, 133.

⁽³⁾ Wiesenfeldt, H.; Reinmuth, A.; Barsties, E.; Evertz, K.; Brintzinger, H. H. *J. Organomet. Chem.* **1989**, *369*, 359.

⁽⁴⁾ Diamond, G. M.; Jordan, R. F.; Petersen, J. F. Organometallics 1996, 15, 4045.

⁽⁵⁾ Schmidt, K.; Reinmuth, A.; Rief, U.; Diebold, J.; Brintzinger, H. H. Organometallics **1997**, *16*, 1724.

^{(6) (}a) Hüttenhofer, M.; Weeber, A.; Brintzinger, H. H. J. Organomet. Chem. **2002**, 663, 58. (b) Hüttenhofer, M.; Schaper, F.; Brintzinger, H. H. Angew. Chem., Int. Ed. **1998**, 37, 2268.

^{(7) (}a) Zhang, X.; Zhu, Q.; Guzei, I. A.; Jordan, R. F. *J. Am. Chem. Soc.* **2000**, *122*, 8093. (b) LoCoco, M. D.; Jordan, R. F. *Abstracts of Papers*, 225th ACS National Meeting, New Orleans, LA, March 23– 27, 2003, INOR-723. (c) SBI = Me₂Si(indenyl)₂, EBI = 1,2-bis(indenyl)ethane. (d) X-ray crystallographic analyses show that the Zr{PhN-(CH₂)₃NPh} chelate rings in Cp₂Zr{PhN(CH₂)₃NPh}, *rac*(SBI)-Zr{PhN(CH₂)₃NPh}, and *rac*-{Me₂Si(2-Me-4,5-benz-1-indenyl)₂}Zr{Ph-N(CH₂)₃NPh} adopt twist conformations.^{7a,b}

addition, as required in the *ansa*-metallocene product. As the second indenyl adds, N–Ph/indenyl steric interactions block formation of the *meso* product by path (ii), and the *rac* product forms by path (i). Significant N–Ph/ indenyl steric interactions would arise on the crowded side of the *meso* isomer (and transition state leading thereto) unless the Zr{PhN(CH₂)₃NPh} chelate ring adopted a different conformation, which is unfavorable.^{7,8}

Application of this strategy to the synthesis of **1** led to a surprising result. The reaction of Li₂[Me₂Si(3^{-t}Bu-C₅H₃)₂] with **2** in Et₂O yields pure *meso*-Me₂Si(3^{-t}Bu-C₅H₃)₂Zr{PhN(CH₂)₃NPh} (*meso*-**3**) quantitatively (Scheme 2)! The ¹H NMR spectrum of *meso*-**3** contains two sets of phenyl resonances and two Si–Me resonances, which establishes the *meso* stereochemistry. Reaction of *meso*-**3** with HCl (1 M Et₂O solution) in benzene yields *meso*-**1** in >95% NMR yield. The use of 4 equiv of HCl in Scheme 2 facilitates the identification of *meso*-**1** by precipitation of the HNPh(CH₂)₃NPhH coproduct as [H₂NPh(CH₂)₃NPhH₂]Cl₂.

To probe the stereocontrol mechanism in Scheme 2, the molecular structure of *meso*-**3** was determined by X-ray diffraction (Figure 1). Surprisingly, the Zr{PhN- $(CH_2)_3NPh$ } ring adopts an envelope conformation in which C(10), C(9), and C(8) are close to the N(1)–Zr-(1)–N(2) plane (respective deviations: -0.056, 0.083, 0.148 Å), while C(7) lies 0.63 Å below and C(1) lies 0.56 Å above this plane. This unusual conformation is enforced by the bulky 'Bu groups, which make close contact with and thus flatten the C(10)–C(8) segment of the chelate.⁹ Puckering of the C(8)–C(7)–N(1) seg-

ment is required to maintain a normal N(1) - Zr(1) - N(2)angle of 95.3(1)°. The C(10) phenyl group on the crowded side of the molecule lies in the N-Zr-N plane. The steric crowding associated with the ^tBu groups is manifested in several other ways. The ^tBu groups are bent 9.5° out of their respective Cp planes, and the Zr-C(^tBu) distances (Zr-C(28) 2.693(3) Å; Zr-C(17) 2.782-(3) Å) are longer than the other Zr–Cp distances (range 2.49–2.65 Å). Additionally, the two Cp rings are canted such that the angle between the C(27)-C(28) and C(18)-C(17) bond vectors is 24.9°. The Cp rings are rotated around the Zr-centroid axes such that the SiMe₂ bridge is displaced by 16.3° from the back position of the metallocene, and the ^tBu groups are displaced toward the front of the metallocene by a corresponding amount. This "lateral distortion"¹⁰ is smaller than those in meso-Me₂Si(3-^tBu-C₅H₃)₂Zr(1,1'-binaphth-2'-ol-2-olato)Cl (27.1°)⁵ and meso-Me₂Si(3-^tBu-C₅H₃)₂ZrMe₂ (24.6°)¹¹ and appears to be limited by steric crowding between the C(10) phenyl group and the Cp and C(34) methyl groups.¹²

These structural data provide clues to the origin of the surprising selectivity for the *meso* product in Scheme 2. As for Scheme 1, we postulate that steric interactions in the mono-Cp intermediate and the transition state for addition of the second Cp⁻ ring are similar to those in the metallocene product. That is, as illustrated in Scheme 3, we postulate that steric interactions force the Zr{PhN(CH₂)₃NPh} chelate ring of mono-Cp intermediate **B** into an envelope conformation. Steric interactions between the ^tBu group of the incoming Cp⁻ ligand and the puckered segment of the chelate ring block formation of *rac*-**3** via path (i), so that *meso*-**3** forms via path (ii).

To favor the formation of a rac-Me_2Si(3-tBu-C_5H_3)_2-Zr{RN(CH_2)_3NR} metallocene, we sought to modify the controlling $[RN(CH_2)_3NR]^{2-}$ ligand to increase the steric

⁽⁸⁾ In contrast, metallocene syntheses using Ti binaphtholate or Zr biphenolate compounds that adopt twist conformations gave low yields^a or *radmeso* mixtures that were isomerized to *rac* products using TEMPO.^b (a) Erikson, M. S.; Fronczek, F. R.; McLaughlin, M. L. *J. Organomet. Chem.* **1991**, *415*, 75. (b) Damrau, H.-R.; Royo, E.; Obert, S.; Schaper, F.; Weeber, A.; Brintzinger, H.-H. Organometallics **2001**, *20*, 5258.

⁽⁹⁾ Close contacts (Å): H(24C)- -H(9B) 2.30, H(9A)- -H(31A) 2.43, H(32C)- -H(8A) 2.20, H(23A)- -H(7A) 2.13, C(10)- -H(24C) 2.75.

^{(10) (}a) Burger, P.; Diebold, J.; Gutman, S.; Hund, H. U.; Brintzinger, H. H. Organometallics **1992**, *11*, 1319. (b) Burger, P.; Hortman, K.; Brintzinger, H. H. Makromol. Chem., Macromol. Symp. **1993**, *66*, 127.

⁽¹¹⁾ Chirik, P. J.; Henling, L. M.; Bercaw, J. E. Organometallics 2001, 20, 534.

⁽¹²⁾ Close H–H contacts (Å): H(15)- -H(29) 2.26, H(15)- -H(16) 2.47, H(15)- -H(34A) 2.40.

Figure 1. Molecular structure and corresponding spacefilling diagram of *meso*-Me₂Si(3-'Bu-C₅H₃)₂Zr{PhN(CH₂)₃-NPh} (*meso*-**3**). H atoms are omitted in the ORTEP view. Bond distances (Å): Zr-N(1) 2.076(3), Zr-N(2) 2.176(3), Zr-{C(16)-C(20) centroid} 2.328(3), Zr-{C(25)-C(29) centroid} 2.308(3). Bond angles (deg): centroid-Zr-centroid 124.2(9).

crowding between the Cp-tBu and N-R groups, to provide a stronger preference for the chelate twist conformation in the metallocene product (and presumably the transition state for the second Cp⁻ addition). This can be achieved by replacing the N-Ph groups with N-SiMe₃ groups, which feature greater three-dimensional steric bulk. The reaction of Zr{Me₃SiN(CH₂)₃-NSiMe₃}Cl₂(THF)₂ (4)¹³ or the related mono-THF adductZr{Me₃SiN(CH₂)₃NSiMe₃}Cl₂(THF)(5)withLi₂[Me₂Si(3-^tBu-C₅H₃)₂] in THF yields pure *rac*-Me₂Si(3^{-t}Bu-C₅H₃)₂-Zr{Me₃SiN(CH₂)₃NSiMe₃} (rac-6) in quantitative NMR vield and 89% isolated vield (Scheme 4). The ¹H NMR spectrum of *rac*-**6** contains singlets for the ^tBu, SiMe₂, and SiMe₃ groups, which confirms the *rac* stereochemistry. *rac*-**6** is cleanly converted to *rac*-**1** by reaction with 6 equiv of HCl in Et₂O. The 3-fold excess of HCl is

necessary because the $Me_3SiNH(CH_2)_3NHSiMe_3$ coproduct reacts with HCl to yield $[H_3N(CH_2)_3NH_3]Cl_2$ and $ClSiMe_3$.

The molecular structure of *rac*-**6** is shown in Figure 2. *rac*-**6** has approximate C_2 symmetry with the C_2 axis lying along the Zr- - C(12) vector. In contrast to *meso*-**3**, the Zr{Me₃SiN(CH₂)₃NSiMe₃} chelate ring has the familiar twist conformation,⁷ which places the N–SiMe₃ groups in the sterically open quadrants of the *rac*-metallocene and minimizes SiMe₃/^tBu steric interactions.^{14,15} We propose that the twist conformation

^{(13) (}a) Freidrich, S.; Gade, L. H.; Scowen, I. J.; McPartlin, M. *Organometallics* **1995**, *14*, 5344. (b) Freidrich, S.; Gade, L. H.; Trosch, D. J. M.; Scowen, I. J.; McPartlin, M. *Inorg. Chem.* **1999**, *38*, 5295.

^{(14) (}a) Deviations (Å) of C and Si atoms from the N(1)–Zr–N(2) plane: Si(2) 0.88, C(11) –0.87, C(12) 0.10, C(13) 0.71, Si(1) –0.61. (b) The conformation of the Zr{Me₃SiN(CH₂)₃NSiMe₃} chelate ring in *rac*-**6** is similar to that in **4**; see ref 13b.

Figure 2. Molecular structure and corresponding spacefilling diagram of *rac*-Me₂Si(3-'Bu-C₅H₃)₂Zr{Me₃SiN(CH₂)₃-NSiMe₃} (*rac*-**6**). H atoms are omitted from the ORTEP view. Bond distances (Å): Zr–N(1) 2.114(2), Zr–N(2) 2.103-(2), N(1)–Si(1) 1.725(2), N(2)–Si(2) 1.737(2), Zr–{C(1)– C(5) centroid} 2.328(3), Zr–{C(6)–C(10) centroid} 2.340(3). Bond angles (deg): N(1)–Zr–N(2) 92.63(8), centroid–Zr– centroid 122.5(9).

dictates the formation of *rac*-**6** in a manner analogous to Scheme 1.

Conclusions

This work expands the scope of the "chelate-controlled" approach to metallocene synthesis to include simple *ansa*-bis-Cp systems. The present results suggest that suitable modification of the controlling bis-amide ligand may enable the synthesis of a wide range of *rac*metallocenes by this method. These studies also provide new insights into the factors that control diastereoselectivity in *ansa*-metallocene formation.

Experimental Section

General Procedures. All reactions were performed under nitrogen or vacuum using standard Schlenk techniques or in a nitrogen-filled drybox. Nitrogen was purified by passage through columns containing activated molecular sieves and Q-5 oxygen scavenger. Pentane, hexanes, toluene, and benzene were distilled from sodium/benzophenone or purified by passage through columns of activated alumina and BASF R3-11 oxygen removal catalyst. Benzene- d_6 was distilled from sodium/benzophenone. The compounds Me₂Si(3-tBu-C₅H₃)₂,³ Zr{PhN-(CH₂)₃NPh}Cl₂(THF)₂,^{7a,b} Zr{Me₃SiN(CH₂)₃NSiMe₃}₂,^{13a} and Zr{Me₃SiN(CH₂)₃NSiMe₃}Cl₂(THF)₂^{13a} were prepared by literature procedures.

Elemental analyses were performed by Midwest Microlabs. ESI-mass spectra were obtained with an Agilent 1100 instrument using direct injection via a syringe pump (ca. 10^{-6} M solutions). Good agreement between observed and calculated isotope patterns was observed in all cases. ¹H and ¹³C NMR spectra were recorded on a Bruker AC-500 or AC-400 spectrometer in flame-sealed or Teflon-valved tubes at ambient probe temperatures. ¹H and ¹³C chemical shifts are reported relative to SiMe₄ and were determined by reference to the residual ¹H and ¹³C solvent resonances. Coupling constants are given in Hz.

Li₂[Me₂Si(3-'Bu-C₅H₃)₂].³ A Schlenk flask was charged with a solution of Me₂Si(3-'Bu-C₅H₃)₂ (2.75 g, 9.03 mmol) in Et₂O (50 mL). The solution was cooled to -78 °C, and a solution of n-BuLi in hexanes (2.5 M, 7.22 mL, 18 mmol) was added by syringe. The mixture was stirred for 4 h at -78 °C, warmed to 0 °C in an ice bath, and then stirred overnight while being allowed to warm gradually to room temperature. The volatiles were removed under vacuum to yield a white solid. Toluene (50 mL) was added by cannula transfer. The slurry was stirred for 30 min and filtered through a medium-porosity glass frit (10–20 μ m pore size) to yield a white solid. The solid was dried under vacuum overnight (2.55 g, 89%). 'H NMR (THF-*d*₈): δ 5.86 (m, 4H, Cp), 5.74 (t, *J* = 3, 2H, Cp), 1.21 (s, 18H, 'Bu), 0.26 (s, 6H, SiMe₂).

meso-Me₂Si(3-^tBu-C₅H₃)₂Zr{PhN(CH₂)₃NPh} (meso-3). A flask was charged with Li₂[Me₂Si(3-tBu-C₅H₃)₂] (0.705 g, 2.22 mmol) and Zr{PhN(CH₂)₃NPh}Cl₂(THF)₂ (1.18 g, 2.22 mmol). Diethyl ether (100 mL) was added by vacuum transfer at -196°C. The mixture was warmed to 0 °C and stirred for 6 h and then warmed to room temperature and stirred overnight. The volatiles were removed under vacuum at 25 °C to yield a red solid. Toluene (100 mL) was added by vacuum transfer at -196 °C, and the mixture was warmed to room temperature and stirred for 30 min. The mixture was filtered through a Celite column, and the volatiles were removed from the filtrate under vacuum at 25 °C. The remaining red solid was dried under vacuum (1.36 g, 99%). This material, which was spectroscopically pure, was recrystallized from pentane/hexamethyldisiloxane.¹⁶ ¹H NMR (C_6D_6): δ 7.28 (t, J = 8, 2H, m-Ph), 7.22 (t, J = 8, 2H, m-Ph), 6.96 (t, J = 8, 1H, p-Ph), 6.79 (m, 3H, o-Ph and p-Ph), 6.47 (d, J = 8.0 2H, o-Ph), 6.22 (m, 4H, Cp), 6.00 (t, J = 3.0, 2H, Cp), 3.57 (t, J = 6, 2H, NCH₂), 3.26 (t, J = 6, 2H, NCH₂), 1.67 (p, J = 6, 2H, CH₂), 0.92 (s, 18H, ^tBu), 0.60 (s, 3H, SiMe), 0.55 (s, 3H, SiMe). ${}^{13}C{}^{1}H{}$ NMR (THF- d_8): δ 162.9, 160.0, 148.4, 129.2, 128.5, 122.6, 120.8, 120.4, 118.3, 117.4, 111.8, 109.7, 106.0, 53.6, 52.9, 33.7, 31.5, 29.7, -2.6, -5.4; the signal at δ 118.3 is broadened by restricted rotation around an N-Ph bond at room temperature but is sharp at 60 °C. Anal. Calcd for C₃₅H₄₆N₂SiZr: C, 68.45; H, 7.54; N, 4.56. Found: C, 68.30; H, 7.52; N, 4.61.

meso-Me₂Si(3-^tBu-C₅H₃)₂ZrCl₂ (*meso*-1). An NMR tube was charged with *meso*-Me₂Si(3-^tBu-C₅H₃)₂Zr{PhN(CH₂)₃NPh} (0.023 g, 0.037 mmol), and C₆D₆ (1.0 mL) was added by syringe. A solution of HCl in Et₂O (1.0 M, 77.5 μ L, 0.077 mmol) was added by syringe. The volatiles were removed under vacuum

⁽¹⁵⁾ In contrast to *meso-***3**, *rac-***6** does not display a significant lateral distortion. However, the Zr–N bond distances, N–Zr–N bond angle, displacement of the 'Bu groups from the Cp planes, and the trend in Zr–C(Cp) distances in *rac-***6** are similar to the data for *meso-***3**. The angle between the C(2)–C(3) and C(10)–C(9) bond vectors is 9.9°.

⁽¹⁶⁾ For other examples of the use of hexamethyldisiloxane as a recrystallization solvent see: (a) Kloppenburg, L.; Petersen, J. L. *Polyhedron* **1995**, *14*, 69. (b) Strauch, J. W.; Petersen, J. L. *Organometallics* **2001**, *20*, 2623.

immediately, and fresh C_6D_6 was added by vacuum transfer at -196 °C. The tube was warmed to room temperature, and a ¹H NMR spectrum was obtained, which showed that complete conversion to Me₂Si(3-^tBu-C₅H₃)₂ZrCl₂ (*meso/rac* 30:1)³ and HNPh(CH₂)₃NHPh had occurred. ¹H NMR (C₆D₆) for *meso*-Me₂Si(3-^tBu-C₅H₃)₂ZrCl₂: δ 6.84 (t, J = 2, 2H, Cp), 5.87 (t, J= 2, 2H, Cp), 5.54 (t, J = 2, 2H, Cp), 1.45 (s, 18H, ^tBu), 0.29 (s, 3H, SiMe), 0.08 (s, 3H, SiMe). ¹H NMR (C₆D₆) for HNPh-(CH₂)₃NPhH: δ 7.17 (t, J = 7, 4H, Ph), 6.76 (t, J = 7, 2H, Ph), 6.46 (d, J = 7, 4H, Ph), 3.50 (br s, 2H, NH), 2.73 (t, J = 7, 4H, NCH₂), 1.32 (p, J = 7, CH₂).

Generation of *meso*-Me₂Si(3-'Bu-C₅H₃)₂ZrCl₂ (*meso*-1) from *meso*-3 and 4 Equiv of HCl. An NMR tube was charged with *meso*-Me₂Si(3-'Bu-C₅H₃)₂Zr{PhN(CH₂)₃NPh} (0.028 g, 0.045 mmol), and C₆D₆ (1.0 mL) was added by syringe. A solution of HCl in Et₂O (1.0 M, 181.0 μ L, 0.181 mmol) was added by syringe. The volatiles were removed under vacuum immediately, and fresh C₆D₆ was added by vacuum transfer at -196 °C. The tube was warmed to room temperature to yield a slurry of a white precipitate in a yellow supernatant. The supernatant was decanted from the precipitate to yield a clear yellow solution. ¹H NMR analysis of the solution established that complete conversion to Me₂Si(3-'Bu-C₅H₃)₂ZrCl₂ (*meso/rac* 20:1) had occurred. The white solid was isolated and identified as [H₂NPh(CH₂)₃NH₂Ph]Cl₂ by NMR and ESI-MS.

[H₂NPh(CH₂)₃NH₂Ph]Cl₂. A flask was charged with a solution of HNPh(CH₂)₃NHPh (1.12 g, 4.94 mmol) in benzene (25 mL). A solution of HCl in Et₂O (1.0 M, 9.89 mL, 9.89 mmol) was added over a 10 min period by syringe. The mixture was stirred for 1 h at room temperature and filtered to afford a white solid. The solid was washed with hexanes (2×20 mL) and benzene (20 mL). The solid was then taken up as a slurry in hexanes (20 mL), and the volatiles were removed under vacuum to yield a white solid. ¹H NMR (D₂O): δ 7.46 (br m, 6H, Ph), 7.32 (br d, J = 7, 4H, Ph), 3.43 (t, J = 8, 4H, NCH₂), 2.03 (p, J = 8, 2H, CH₂). ¹³C{¹H}</sup> NMR (D₂O): δ 134.0, 130.3, 129.7, 122.0, 47.6, 21.4. ESI-MS: [HNPh(CH₂)₃NH₂Ph]⁺ calcd m/z 227.1, found 227.1.

Zr{Me₃SiN(CH₂)₃NSiMe₃}Cl₂(THF) (5). A flask was charged with Zr{Me₃SiN(CH₂)₃NSiMe₃}₂ (3.04 g, 5.79 mmol) and ZrCl₄ (1.35 g, 5.79 mmol). Toluene (100 mL) was added, and the mixture was heated to 60 °C for 3 days. The volatiles were removed under vacuum, and the resulting white solid was washed with pentane (75 mL) and dried under vacuum (4.20 g, 95%). The solid was dissolved in THF (40 mL). The bis-THF adduct Zr{Me₃SiN(CH₂)₃NSiMe₃}Cl₂(THF)₂ (4) can be isolated from this solution by crystallization at -35 °C as described by Gade^{13a,b} or by removal of the volatiles under vacuum and vacuum-drying the sample for a few minutes. Drying under vacuum overnight yielded Zr{Me₃SiN(CH₂)₃-NSiMe₃}Cl₂(THF) as a white solid (5.01 g, 95%). ¹H NMR (C_6D_6) : δ 3.72 (m, 4H, O*CH*₂), 3.23 (t, J = 5, 4H, N*CH*₂CH₂), 1.74 (p, J = 5, 2H, NCH₂CH₂), 1.25 (m, 4H, OCH₂CH₂), 0.31 (s, 18H, SiMe₃).

rac-Me₂Si(3-^tBu-C₅H₃)₂Zr{Me₃SiN(CH₂)₃NSiMe₃} (rac-6). A flask was charged with $Li_2[Me_2Si(3-^tBu-C_5H_3)_2]$ (0.853) g, 2.69 mmol) and Zr{Me₃SiN(CH₂)₃NSiMe₃}Cl₂(THF) (1.21 g, 2.69 mmol), and THF (100 mL) was added by vacuum transfer at -196 °C. The mixture was warmed to 0 °C in an ice bath and then stirred for 20 h while the bath was allowed to warm to room temperature. The volatiles were removed under vacuum at 25 °C to yield a yellow solid. Benzene (100 mL) was added by vacuum transfer at -196 °C, and the mixture was warmed to room temperature and stirred for 3 h. The mixture was filtered through a medium-porosity glass frit, and the volatiles were removed from the filtrate under vacuum at 25 °C. The resulting yellow solid was dried under vacuum (1.46 g, 89%). This material, which was spectroscopically pure, was recrystallized from pentane. ¹H NMR (C₆D₆): δ 6.85 (t, J = 2, 2H, Cp), 5.91 (t, J = 2, 2H, Cp), 5.84 (t, J = 2, 2H, Cp), 3.32

 Table 1. Summary of Crystal Data for meso-3 and rac-6

	meso- 3	rac-6
formula	C ₃₅ H ₄₆ N ₂ SiZr	C ₂₉ H ₅₄ N ₂ Si ₃ Zr
cryst syst	monoclinic	monoclinic
space group	$P2_1/n$	$P2_1/n$
a (Å)	10.324(2)	14.712(7)
$b(\mathbf{A})$	18.201(3)	11.872(6)
$c(\mathbf{\hat{A}})$	16.753(3)	19.306(9)
β (deg)	100.203(2)	104.373(8)
V(Å ³)	3094.8(8)	3266(3)
Z	4	4
$\mu ({\rm mm}^{-1})$	0.420	0.466
cryst dimens (mm)	0.2 imes 0.2 imes 0.2	$0.40 \times 0.25 \times 0.25$
cryst color, habit	red, fragment	yellow, fragment
T(K)	100	135
diffractometer	Bruker Smart Apex	Bruker Smart Apex
radiation, λ (Å)	Μο Κα, 0.71073	Μο Κα, 0.71073
θ range (deg)	2.24 - 25.03	2.03 - 25.02
data collected: h;k;l	$\pm 12; -21, 19; -18, 19$	$\pm 17; \pm 14; \pm 22$
no. of reflns	19 612	23 087
no. of indep reflns $(B_{1})^{a}$	5476 (0.0322)	5755 (0.0252)
(π_{int})-	SADARS	SADARS
may min transmn	1 00 0 854	1 00 0 859
max., mm. transmi	5467/0/260	1.00, 0.032
params	5407/0/300	5755/0/330
<i>R</i> indices $(I > 2\sigma(I))^b$	R1 = 0.0456	R1 = 0.0331
	wR2 = 0.0899	wR2 = 0.0817
R indices (all data) ^b	R1 = 0.0465	R1 = 0.0347
	wR2 = 0.0904	wR2 = 0.0826

 $\label{eq:Rint} \begin{array}{l} {}^{a}R_{\rm int} = \sum |F_0{}^2 - \langle F_0{}^2 \rangle | / \sum |F_0{}^2|, \ ^{b}{\rm R1} = \sum ||F_0| - |F_c|| / \sum |F_0|; \ {\rm wR2} = \\ [\sum [w(F_0{}^2 - F_c{}^2)^2] / \sum [w(F_0{}^2)^2]]^{1/2}, \ {\rm where} \ w = q[\sigma^2(F_0{}^2) + (aP)^2 + bP]^{-1}. \end{array}$

^tBu), 1.00 (br m, 2H, CH₂), 0.47 (s, 6H, SiMe₂), 0.27 (s, 18H, SiMe₃). ¹³C{¹H} NMR: δ 148.8, 116.1, 111.3, 107.9, 106.5, 46.2, 33.7, 31.3, 28.5, 3.6, -4.3. Anal. Calcd for C₂₉H₅₄N₂Si₃Zr: C, 57.45; H, 8.98; N, 4.57. Found: C, 57.19; H, 8.97; N, 4.57.

rac-Me₂Si(3-tBu-C₅H₃)₂ZrCl₂ (rac-1). NMR Scale. An NMR tube was charged with {\it rac-Me_2Si}(1-C_5H_3-3-{}^tBu)_2Zr\{Me_3- $SiN(CH_2)_3NSiMe_3\}$ (0.0274 g, 0.0451 mmol) and C_6D_6 (1 mL). A solution of HCl in Et₂O (1.0 M, 271 µL, 0.271 mmol) was added by syringe. The volatiles were removed under vacuum to yield a yellow solid. THF- d_8 (1 mL) was added by vacuum transfer at -196 °C, and the tube was warmed to room temperature to yield a slurry of a white solid in a yellow supernatant. The supernatant was decanted off and transferred to a new NMR tube. NMR analysis confirmed that quantitative conversion to rac-Me₂Si(3-tBu-C₅H₃)₂ZrCl₂ had occurred. ¹H NMR of *rac*-Me₂Si(3-^tBu-C₅H₃)₂ZrCl₂ (THF-d₈): δ 6.74 (t, J = 3, 2H), 6.06 (t, J = 3, 2H, Cp), 5.92 (t, J = 3, 2H, Cp), 1.32 (s, 18H, ^tBu), 0.68 (s, 6H, SiMe₂). The white solid was washed with benzene (2 mL) and hexanes (2 mL) and dried under vacuum. NMR and ESI-MS analysis established that the white solid was [H₃N(CH₂)₃NH₃]Cl₂. Data for $[H_3N(CH_2)_3NH_3]Cl_2$: ¹H NMR (D₂O): δ 3.14 (t, J = 8, 4H, NCH₂), 2.10 (p, J = 8, 2H, CH₂). ¹³C{¹H} NMR (D₂O): δ 36.59, 25.41. ESI-MS (DMSO): [H₃N(CH₂)₃NH₂]⁺ calcd m/z 75.1, found 75.2.

rac-Me₂Si(3-'Bu-C₅H₃)₂ZrCl₂ (*rac*-1). Preparative Scale. A flask was charged with *rac*-Me₂Si(3-'Bu-C₅H₃)₂Zr{Me₃SiN-(CH₂)₃NSiMe₃} (1.554 g, 2.563 mmol) and benzene (80 mL). A solution of HCl in Et₂O (1.0 M, 15.38 mL, 15.38 mmol) was added by syringe over a 10 min period. The volatiles were removed under vacuum to yield a yellow solid. Benzene (50 mL) was added by vacuum transfer at -196 °C, and the mixture was warmed to room temperature and stirred for 45 min. The mixture was filtered through a medium-porosity glass frit. The volatiles were removed from the filtrate under vacuum. The remaining yellow solid was dried under vacuum (1.00 g, 84%). ¹H NMR (C₆D₆): δ 6.72 (t, J = 3, 2H, Cp), 5.65 (t, J = 3, 2H, Cp), 1.40 (s, 18H, 'Bu), 0.18 (s, 6H, SiMe₂). ¹³C{¹H} NMR: δ 152.9, 125.8, 116.2, 110.2, 105.4, 33.6, 30.3, -5.8.

Reaction of Me₃SiNH(CH₂)₃NHSiMe₃ with 4 Equiv of HCl. An NMR tube was charged with a solution of Me₃SiNH-(CH₂)₃NHSiMe₃ (0.049 g, 0.23 mmol) in C₆D₆ (2 mL). A solution of HCl in Et₂O (1.0 M, 0.9 mL, 0.9 mmol) was added by syringe, and a white precipitate formed. The volatiles were vacuum transferred to a new NMR tube. The white solid was identified as [H₃N(CH₂)₃NH₃]Cl₂ by NMR and ESI-MS. The presence of ClSiMe₃ in the volatiles was established by ¹H NMR and confirmed by spiking with additional ClSiMe₃.

X-ray Structure Determinations. Crystal data, data collection details, and solution and refinement procedures are summarized in Table 1, and full details are provided in the Supporting Information. Crystals of *meso-***3** were obtained from a 5:1 pentane/hexamethyldisiloxane solution which was heated

to 80 °C and then allowed to cool to room temperature over a 24 h period. Crystals of *rac*-**6** were obtained from a saturated pentane solution cooled to -35 °C.

Acknowledgment. We thank Dr. Ian Steele for assistance with the X-ray crystallographic analyses. This work was supported by the National Science Foundation (CHE-0212210).

Supporting Information Available: Additional experimental details and tables of crystallographic data for *meso-***3** and *rac-***6**; data are also available for these compounds in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

OM034184C