Total Synthesis of (-)-Preswinholide A

Ian Paterson,* Julian D. Smith, Richard A. Ward, and John G. Cumming

> University Chemical Laboratory Lensfield Road, Cambridge, CB2 1EW, UK

> > Received October 27, 1993

The members of the swinholide family of marine-derived macrodiolides exhibit potent cytotoxic activity against a variety of human carcinoma cell lines.¹⁻³ Swinholide A (1), isolated¹ from the marine sponge Theonella swinhoei, is a symmetrical dimer² formed through the union of two monomeric units 2 to generate a 44-membered macrocyclic ring (Scheme 1). This secoacid 2, termed preswinholide A, has recently been isolated^{3a,4} from Theonella swinhoei, and its methyl ester 3 has been obtained by methanolysis of swinholide A.^{2c} The structural complexity of this unique class of polyketide, combined with the associated biological activity and scarcity of natural supply, makes the swinholides and other related macrolides^{5d} important targets for chemical synthesis. Herein, we report the first total synthesis of preswinholide A (2), the biosynthetic precursor of 1.6

As outlined in Scheme 1, the complete carbon skeleton of preswinholide A (2) was anticipated to arise from the union of C_1-C_{15} aldehyde 4^{5b} with $C_{19}-C_{32}$ aldehyde 5^{5c} using butanone synthon 6 as a linking unit. Such an approach should provide optimum flexibility in the order of events required for stereocontrol in this demanding coupling process. We initially decided to attach the C_{16} - C_{18} linker unit to 5 and investigate the stereoselectivity of the C_{15} - C_{16} aldol bond construction between the derived ethyl ketone and aldehyde 4.

The stereocontrolled conversion of 5 into ethyl ketone 8 was readily accomplished in three steps (Scheme 2). Reaction of aldehyde 5 with allylsilane 77 promoted by TiCl₄ (1 equiv, CH_2 -C12, -90 °C) gave the 19R allylic alcohol in 94% yield with 95% ds (via Felkin-Anh control).^{5d} Ozonolysis of the olefin and formation of the p-methoxybenzyl (PMB) ether then gave 8 (57% overall yield from 5). Regio- and stereoselective coupling of the enantiomerically pure subunits 45b and 8 was best achieved using a boron-mediated anti aldol reaction.⁸ Addition of (E)-enol dicyclohexylborinate 9, selectively generated from 8 using (c-C₆H₁₁)₂BCl/Et₃N in Et₂O,⁹ to 4 gave an 83% yield of diaster-

 (2) (a) Kobayashi, M.; Tanaka, J.; Katori, T.; Matsuura, M.; Kitagawa,
 I. Tetrahedron Lett. 1989, 30, 2963. (b) Kitagawa, I.; Kobayashi, M.; Katori, I. Ieinaneuron Leit. 1967, 50, 2965. (b) Kitagawa, I.; Kobayashi, M.; Katori, T.; Yamashita, M.; Tanaka, J.; Doi, M.; Ishida, T. J. Am. Chem. Soc. 1990, 112, 3710. (c) Kobayashi, M.; Tanaka, J.; Katori, T.; Matsuura, M.; Yamashita, M.; Kitagawa, I. Chem. Pharm. Bull. 1990, 38, 2409. (d) Doi, M.; Ishida, T.; Kobayashi, M.; Kitagawa, I. J. Org. Chem. 1991, 56, 3629. (3) (a) Tsukomoto, S.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. J. Chem. Soc., Perkin Trans I 1991, 3185. (b) Kobayashi, M.; Tanaka, J.; Katori, T.; Kitagawa, I. Chem. Pharm. Bull. 1900, 38, 2660.

Kitagawa, I. Chem. Pharm. Bull. 1990, 38, 2960.

(4) Todd, J. S.; Alvi, K. A.; Crews, P. Tetrahedron Lett. 1992, 33, 441. (5) (a) Paterson, I.; Smith, J. D. J. Org. Chem. 1992, 57, 3261. (b) Paterson, I.; Smith, J. D. Tetrahedron Lett. **1993**, *34*, 5351. (c) Paterson, I.; Cumming, J. G. Tetrahedron Lett. **1992**, *33*, 2847. (d) Scytophycin C: Paterson, I.; Yeung, K.-S. Tetrahedron Lett. 1993, 34, 5347.

(6) Presented at the 13th International Symposium on Organic Synthesis of the Royal Society of Chemistry (Perkin Division), Oxford, UK (July 22, 1993).

(7) Allylsilane 7 was prepared from EtCO₂Et by (i) Me₃SiCH₂MgCl, CeCl₃, THF; (ii) SiO₂, CH₂Cl₂. Narayanan, B. A.; Bunnelle, W. H. Tetrahedron Lett. 1987, 28, 6261.

(8) A syn aldol coupling of the (Z)-enol di-*n*-butylborinate derived from 8 (n-Bu₂BOTf, *i*-Pr₂NEt) with aldehyde 4 was first explored. This led to the undesired syn isomer (*i.e.*, having the bis-epi 15*R*, 16*S* stereochemistry for the swinholides) with 77% ds. Attempted use of (+)-Ipc2BOTf in this reaction, to confer reagent control, was unsuccessful and only gave traces of aldol

(b) Conter *Pergent control*, was insuccessful and only gave fraces of alcoholy products. Paterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. C.; McClure, C. K.; Norcross, R. D. *Tetrahedron* 1990, 46, 4663.
(9) (a) Brown, H. C.; Dhar, R. K.; Bakshi, R. K.; Pandiarajan, P. K.; Singaram, B. J. Am. Chem. Soc. 1989, 111, 3441. (b) Brown, H. C.; Dhar, D. Y.; Constor K. Singaram, B. J. Am. Chem. Soc. 1989, 111, 3441. (b) Brown, H. C.; Dhar, P. K.; Singaram, B. J. Am. Chem. Soc. 1989, 111, 3441. (c) Strong and Stron R. K.; Ganesan, K.; Singaram, B. J. Org. Chem. 1992, 57, 449.

eomeric aldol products (52:35:13). Separation by preparative HPLC gave the two anti aldol isomers 10 and 11.^{10,11} The major isomer 10 (40% yield) had the correct relative stereochemistry¹¹ of the C_{16} methyl but required inversion of the C_{15} hydroxyl group. Using catecholborane in THF,¹² reduction of the C_{17} ketone in 10 gave the corresponding syn 1,3-diol in 93% yield and \geq 95% ds. Treatment with DDQ under anhydrous conditions induced

⁽¹¹⁾ The 15R stereochemistry in 10 was inferred on the basis of similarities in the ¹H NMR spectra to model compounds i and ii, where the configuration had been determined by ¹H NMR analysis of the derived (R)- and (S)-MPTA esters. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.

© 1994 American Chemical Society

⁽¹⁾ Carmely, S.; Kashman, Y. Tetrahedron Lett. 1985, 26, 511

⁽¹⁰⁾ The anti relative stereochemistry assignment at C_{15} and C_{16} was based primarily on the well-precedented use of (c-C6H11)2BCl to generate anti aldol products (cf. ref 9) and on the fact that the two isomers formed using this reagent were clearly different from those isolated from the syn-selective aldolization using n-Bu₂BOTf (cf. ref 8). Unambiguous determination of the C15-C16 relative stereochemistry by 1H NMR was not possible since one syn and and both anti aldol products show similar J values (ca. 7 Hz).

^a Reagents and conditions: (a) TiCl₄, CH₂Cl₂, -90 °C, 0.5 h; (b) O₃, CH₂Cl₂/MeOH, -78 °C, 15 min; Me₂S, -78 \rightarrow 20 °C, 3 h; (c) PMBOC(CCl₃)=NH, TfOH (0.5 mol %), Et₂O, 20 °C, 1 h; (d) (c-C₆H₁₁)₂BCl, Et₃N, Et₂O, -40 \rightarrow 0 °C, 2 h; 4, -78 \rightarrow 20 °C, 20 h; H₂O₂, MeOH, 0 °C, 0.5 h; (e) catecholborane, THF, -78 \rightarrow 20 °C, 23 h; (f) DDQ, 4-Å molecular sieve powder, CH₂Cl₂, 20 °C, 0.5 h; (g) Dess-Martin periodinane, CH₂Cl₂, 20 °C, 0.5 h; (h) LiAlH(O-t-Bu)₃, Et₂O, THF, 0 °C, 0.5 h, then -20 °C, 18 h; (i) MeOTf, 2,6-di-*tert*-butylpyridine, 50 °C, 4.25 h; (j) 40% aqueous HF, MeCN, 0 \rightarrow 20 °C, 2 h; (k) Ac₂O, pyridine, DMAP, 20 °C, 18 h; (l) NaOH, MeOH, H₂O, 20 °C, 5 h.

the cyclization of the strategically positioned C₁₉ PMB ether¹³ onto the C₁₇ hydroxyl to give an 83% yield of the *p*-methoxybenzylidene acetal 12. Subsequent oxidation using the Dess-Martin periodinane,¹⁴ followed by reduction using LiAlH(O-*t*-Bu)₃, gave the 15S alcohol 13 in 83% overall yield and up to 83% ds.¹⁵ Aldol adduct 11 can also be used productively in the synthesis of preswinholide A,¹⁶ by conversion into the ketone precursor of 13 by a four-step sequence involving epimerization at C₁₆. With all the stereocenters required for preswinholide A intact, the C₁₅ hydroxyl group was methylated (MeOTf/2,6-di-*tert*-butylpyridine¹⁷) to give the fully protected secoacid 14, $[\alpha]^{20}_{D} = -84.3^{\circ}$ (c 1.6, CHCl₃), in 66% isolated yield (plus 12% recovered starting material).

Removal of all the hydroxyl-protecting groups was accomplished in a single step in 79% yield using aqueous HF in MeCN. The resulting, known^{2b} pentaol 3, $[\alpha]^{20}_{D} = -42^{\circ} (c \ 0.61, CHCl_3)$ $(cf. \operatorname{lit.}^2 [\alpha]^{20}_{D} = -31^{\circ} (c \ 2.8, CHCl_3))$, exhibited ¹H NMR data (CDCl₃ and C₆D₆) in accord¹⁸ with the published values and copies of the ¹H NMR spectrum (CDCl₃) provided by Professor Kitagawa. In addition, 3 was converted into its pentaacetate 15, $[\alpha]^{20}_{D} = -26^{\circ} (c \ 0.45, CHCl_3) (cf. \operatorname{lit.}^{3b} [\alpha]^{20}_{D} = -22^{\circ} (c \ 0.62,$ $CHCl_3))$, which has also been prepared from natural material.^{3b} All NMR data (¹H, ¹³C, COSY and HETCOR) were in total agreement¹⁸ with the literature values. Finally, 3 was hydrolyzed (NaOH, aqueous MeOH) to give preswinholide A (2), $[\alpha]^{20}_{D} =$ -24.0° (c 0.25, MeOH) (cf. lit.^{3a} [α]²⁰_D = -29.0° (c 1.0, MeOH)), in 52% yield following reverse-phase HPLC.

In summary, the first total synthesis of (-)-preswinholide A, the biosynthetic precursor to swinholide A, has been completed using a boron-mediated anti aldol reaction for the coupling of the complex fragments 4 and 8. This work shows that we have all of the 15 stereogenic centers and suitable protecting groups in place for eventual elaboration of secoacid derivative 14 into swinholide A.

Acknowledgment. We thank the SERC (GR/H01922), Rhône-Poulenc Rorer (Dagenham), Zeneca Pharmaceuticals (Alderley Park), and Merck Sharp & Dohme (Terlings Park) for their support and Professor I. Kitagawa (Osaka University) for kindly providing us with copies of NMR spectra and an authentic sample of the methyl ester 3.

Supplementary Material Available: Listing of spectroscopic and physical data for compounds 2, 3, 10, and 15, and copies of ¹H and ¹³C NMR spectra (16 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

⁽¹³⁾ Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. Tetrahedron Lett. 1982, 23, 889.

⁽¹⁴⁾ Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277.

⁽¹⁵⁾ The minor component from this reaction is alcohol 12 and is therefore recyclable.

 ⁽¹⁶⁾ The methyl ester of 16-epi-preswinholide A was also prepared from
 11. It showed substantially different ¹H NMR spectral data from that of 3.
 (17) (a) Walba, D. M.; Thurmes, W. N.; Haltiwanger, R. C. J. Org. Chem.

 ^{(17) (}a) Walba, D. M.; Thurmes, W. N.; Haltiwanger, R. C. J. Org. Chem.
 1988, 53, 1046. (b) Evans, D. A.; Sheppard. G. S. J. Org. Chem. 1990, 55, 5192.

⁽¹⁸⁾ While the ¹H NMR spectrum of synthetic 2 in CDCl₃ was identical to that obtained for a sample of 3 derived from natural material, the spectra acquired in C₆D₆ exhibited a significant concentration dependence. This effect was more pronounced in the ¹³C NMR spectra obtained for synthetic 3 in both CDCl₃ and C₆D₆. In the latter solvent, all of the ¹³C chemical shifts of our most concentrated sample agreed within ±0.5 ppm. These observations led us to prepare the less polar pentaacetate 15, which exhibited ¹H, ¹³C, COSY and HETCOR NMR (CDCl₃), IR (CCl₄), and FAB (glycerol matrix) mass spectral data in full agreement with the literature values (cf. ref 3b).