## IR spectroscopic and *ab initio* quantum-chemical study of the products of hydrolysis of silicon tetrafluoride at low water concentrations

P. G. Sennikov, \*\* M. A. Ikrin, S. K. Ignatov, A. A. Bagatur yants, and E. Yu. Klimov\*

<sup>a</sup>Institute of the Chemistry of High-Purity Substances, Russian Academy of Sciences, 49 ul. Tropinina, 603600 Nizhnii Novgorod, Russian Federation. Fax: +7 (831 2) 66 8666. E-mail: sen@hp.nnov.su
<sup>b</sup>N. I. Lobachevsky Nizhnii Novgorod State University, 23 prosp. Gagarina, 603600 Nizhnii Novgorod, Russian Federation. E-mail: ignatov@qchem.nnov.su
<sup>c</sup>Center of Photochemistry, Russian Academy of Sciences, 7a ul. Novatorov, 117421 Moscow, Russian Federation. E-mail: sasha@mx.icp.rssi.ru

According to the results of IR spectroscopic study and quantum-chemical calculations, hydroxo derivatives  $SiF_{4-x}(OH)_x$  are formed in the course of hydrolysis of silicon tetrafluoride in the presence of small amount of water along with hexafluorodisiloxane.

Key words: silicon tetrafluoride, products of hydrolysis; IR spectroscopy, quantumchemical calculations.

Silicon tetrafluoride is widely used for producing epitaxial layers of amorphous silicon and as a fluorinating agent in manufacturing SiO, fiber light pipes.<sup>1</sup> For these purposes SiF, with extremely low concentrations of oxygen- and/or hydrogen-containing impurities,<sup>2</sup> especially water and products of the hydrolysis of the main substance, is required. The most informative methods for the determination of impurities in SiF, are IR spectroscopy and mass-spectrometry.<sup>3,4</sup> It should be noted that the composition of the impurities in SiF<sub>4</sub> depends strongly on the method of preparation of the latter and the procedure for subsequent purification. Our preliminary study of IR spectra of gaseous SiF<sub>4</sub> synthesized by thermal decomposition of sodium hexafluorosilicate and containing water impurity showed the presence of an intense absorption band in the region near 3764 cm<sup>-t</sup> and a weaker band at 3860 cm<sup>-1</sup>. The aim of this work was to study the nature of the band at  $3764 \text{ cm}^{-1}$  in the IR spectrum of silicon tetrafluoride experimentally and theoretically using ab initio quantum-chemical calculations.

## Experimental

Silicon tetrafluoride was obtained by thermal decomposition of sodium hexafluorosilicate and purified from volatile impurities by cryofiltration followed by rectification on a column with sampling the medium fraction.

1R spectra of gaseous SiF<sub>4</sub> in the region  $800-4500 \text{ cm}^{-1}$  were recorded on Specord M80 and 1FS-120HR instruments with a resolution of 4 cm<sup>-1</sup> and 0.1 cm<sup>-1</sup>, respectively. A multipass cell with a length of the optical path (*I*) of 100 cm

and a cell with l = 20 cm with ZnSe windows were used. Spectra of solutions in liquid CCl<sub>4</sub> were obtained in a cell with an optical path length of 10 cm (ZnSe windows) equipped with an inlet system that allowed introducing gaseous SiF<sub>4</sub> and H<sub>2</sub>O. Carbon tetrachloride was purified by rectification until a residual moisture content of  $5 \cdot 10^{-5}$  mol.% was achieved.

**Calculation procedure.** Quantum-chemical calculations of the equilibrium molecular structure and vibrational spectra of possible products of hydrolysis of SiF<sub>4</sub> were carried out by the *ab initio* SCF method with inclusion of correlation energy according to the density functional theory (DFT) using the B3LYP mixed exchange-correlation functional in the 6-311G(d,p) basis set (five-component basis set functions). The geometry optimization and calculations of vibrational frequencies were carried out using the GAUSSIAN 94 program.<sup>5\*</sup>

## **Results and Discussion**

In addition to bands at 3764 and 3860 cm<sup>-1</sup>, those at 838 and 912 cm<sup>-1</sup> are observed in the IR spectrum of gaseous freshly synthesized SiF<sub>4</sub> recorded with a low resolution (4 cm<sup>-1</sup>). The latter bands were assigned<sup>4</sup> to stretching vibrations of the molecule of hexafluorodisiloxane, which is the main product of hydrolysis of SiF<sub>4</sub> occurring according to the following commonly accepted<sup>3.4.6</sup> scheme.

$$2 \operatorname{SiF}_4 + \operatorname{H}_2 O \longrightarrow \operatorname{Si}_2 F_6 O + 2 \operatorname{HF}$$
 (1)

\* The program was submitted by the Center for Computer Assistance to Chemical Research (CACR) of RAS at the N. D. Zelinsky Institute of Organic Chemistry of the Russian Acaderny of Sciences in the framework of the Grant of the Russian Foundation for Basic Research (Project No. 95-07-20201).

Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 92-96, January, 1999.

1066-5285/99/4801-0093 \$22.00 © 1999 Kluwer Academic/Plenum Publishers

In addition to the absorption band at 3764 cm<sup>-1</sup>, two narrow lines near 3800 and 4100 cm<sup>-1</sup> corresponding to H<sub>2</sub>O and HF molecules, respectively, are clearly seen in the spectrum of a purified SiF4 specimen recorded with a resolution of 0.1 cm<sup>-1</sup> in a cell with a length of the optical path of 20 cm (Fig. 1, a). The addition of 2 mol.% of H<sub>2</sub>O in the cell leads to an increase in both the intensities of the lines corresponding to H<sub>2</sub>O and HF and those of structureless bands at 3764 and 3860 cm<sup>-1</sup> (Fig. 1, b). The pattern of SiF<sub>4</sub> spectrum in the region 2700-3000 cm<sup>-1</sup> remains unchanged after addition of D<sub>2</sub>O, viz., the bands at 2710 and 2850 cm<sup>-1</sup> appear (Fig. 2) and the ratio of their intensities approximately corresponds to that shown in Fig.1, b. Thus, the bands in the region  $3700-3900 \text{ cm}^{-1}$  observed in the spectrum of gaseous SiF<sub>4</sub> are sensitive to water addition and can correspond either to hydroxyl-containing products of the hydrolysis of silicon tetrafluoride or to a SiF<sub>4</sub> complex with water. Previously,<sup>7</sup> the possibility of the formation of the latter in a  $SiF_4$ -H<sub>2</sub>O mixture (8 : 1) in a lowtemperature argon matrix has been reported. The author of Ref. 7 also observed spectral lines corresponding to HF and hexafluorodisiloxane, which are the main products of hydrolysis of SiF<sub>4</sub>.



Fig. 1. IR spectra of gaseous SiF<sub>4</sub> in the region 3500–4200 cm<sup>-1</sup>: a, specimen purified by rectification; b, the same specimen with water impurity  $(l = 20 \text{ cm}, \text{ with a resolution of } 0.1 \text{ cm}^{-1}, T = 298 \text{ °C}; A = -\log(I_0/I)$ .

The equilibrium molecular structures and vibrational spectra of plausible hydroxyl-containing products of the hydrolysis of SiF<sub>4</sub> (SiF<sub>3</sub>OH and SiF<sub>2</sub>(OH)<sub>2</sub> molecules) and those of the intermediate SiF<sub>4</sub>  $\cdot$  H<sub>2</sub>O complex were obtained from *ab initio* quantum-chemical calculations.

It is known that the harmonic vibrational frequencies thus determined are, as a rule, appreciably overestimated as compared with those observed experimentally. To compare the calculated and experimental data, the calculated vibrational frequencies should be corrected using a standard scale factor<sup>8</sup> obtained from calculations of reference compounds essentially differing from the substances under consideration. For this reason we rejected the idea of using the recommended value of the scale factor. The vibrational frequencies were corrected using the linear calibration function

$$v_{\rm corr} = a v_{\rm calc} + b, \tag{2}$$

where  $v_{calc}$  is the vibrational frequency obtained from *ab initio* calculations;  $v_{corr}$  is the corrected vibrational frequency; *a* and *b* are the calibration coefficients found by the least squares method from comparing the experimental ( $v_{exp}$ ) and calculated frequencies ( $v_{calc}$ ) in the IR spectra of SiF<sub>4</sub> and H<sub>2</sub>O:

$$v_{exp}(SiF_4, H_2O) = av_{calc}(SiF_4, H_2O) + b.$$
(3)

Experimental<sup>9</sup> and calculated vibrational frequencies of SiF<sub>4</sub> and H<sub>2</sub>O used to fit *a* and *b* values are listed in Table 1. The coefficients *a* and *b* determined from Eq. (2) are 0.9497 and 44.59 cm<sup>-1</sup>, respectively. The value of coefficient *a* is close to the recommended value of standard scale factor (0.9613) for a similar level of approximation (B3LYP/6-31G(d)). The correlation coefficient between the experimental and calculated frequencies for given *a* and *b* is 0.99994 and the mean absolute deviation of predicted values from experimentally observed frequencies of SiF<sub>4</sub> and H<sub>2</sub>O is 12.3 cm<sup>-1</sup>. This suggests that the found correction coefficients make

**Table 1.** The experimental  $(v_{exp})$ , calculated  $(v_{calc})$ , and corrected  $(v_{corr})$  using Eq. (1) vibrational frequencies and the experimental  $(A_{exp} \cdot 10^{-8})^a$  and calculated  $(A_{calc} \cdot 10^{-8})$  integrated absorption coefficients of fundamental bands in the IR spectra of SiF<sub>4</sub> and H<sub>2</sub>O

| Com-<br>pound    | V <sub>exp</sub> 3,4 | v <sub>cale</sub><br>cm <sup>-1</sup> | v <sub>corr</sub> | $\frac{A_{exp}^{3,4}}{10^8 \text{ cm}^2}$ | $A_{\text{calc}}$<br>mol <sup>-1</sup> s <sup>-1</sup> | Assign-<br>ment <sup>b</sup> |
|------------------|----------------------|---------------------------------------|-------------------|-------------------------------------------|--------------------------------------------------------|------------------------------|
| SiF₄             | 264                  | 254                                   | 286               |                                           |                                                        | δ. Ε                         |
|                  | 388                  | 372                                   | 398               | 1                                         | 26                                                     | δ. Τη                        |
|                  | 801                  | 773                                   | 779               |                                           |                                                        | v., Å,                       |
|                  | 1031                 | 1018                                  | 1011              | 10                                        | 117                                                    | Var. Ta                      |
| H <sub>2</sub> O | 1595                 | 1639                                  | 1601              | 22                                        | 29                                                     | δ. Α,                        |
|                  | 3657                 | 3810                                  | 3663              | 5                                         | 2                                                      | v. A.                        |
|                  | 3756                 | 3907                                  | 3755              | 25                                        | 12                                                     | v, B,                        |
|                  |                      |                                       |                   |                                           |                                                        |                              |

<sup>*a*</sup> For SiF<sub>4</sub>, the relative intensities of the bands<sup>10</sup> are given. <sup>*b*</sup> The following notations were used:  $\delta$ , deformation; v<sub>s</sub>, symmetric stretching; and v<sub>as</sub>, antisymmetric stretching vibrations. it possible to evaluate the vibrational frequencies of similar molecules on the basis of quantum-chemical calculations with an accuracy of  $\sim 12$  cm<sup>-1</sup>.

Using the described procedure, it is possible to assign the characteristic absorption bands observed in the spectrum of gaseous SiF, in the presence of water vapors as admixture. The calculated and corrected vibrational frequencies of possible products formed in the initial stage of hydrolysis (hydroxo derivatives SiF<sub>3</sub>OH and SiF<sub>2</sub>(OH), and the suggested reaction intermediate, complex SiF<sub>4</sub>·H<sub>2</sub>O) are listed in Table 2. A special quantumchemical study is dedicated to investigation of the structure, stability, and pathways of possible further transformations of intermediate SiF<sub>4</sub> complexes with water. Its results will be published elsewhere. Several stable structures corresponding to the above intermediate were found. In this work, we consider only the most stable structure, viz., the donor-acceptor complex with the Si-O coordination bond, whose vibrational frequencies are listed in Table 2. The calculated equilibrium molecular structures of SiF<sub>3</sub>OH, SiF<sub>2</sub>(OH)<sub>2</sub> and that of the most stable complex  $SiF_4 \cdot H_2O$  are shown in Fig. 3.

**Table 2.** Calculated values of vibrational frequencies  $(v/cm^{-1})$ and integrated absorption coefficients  $(A/10^8 \text{ cm}^2 \text{ mol}^{-1} \text{ s}^{-1})$  of the bands in the IR spectra of several possible products of the interaction between SiF<sub>4</sub> and H<sub>2</sub>O

| Compound                           | v           | A · 10 <sup>-8</sup> | Assignment             |
|------------------------------------|-------------|----------------------|------------------------|
| SiF <sub>3</sub> OH                | 386         | 24                   | δ(SiF3)                |
|                                    | 398         | 27                   | δ(SiF <sub>3</sub> )   |
|                                    | 405         | 26                   | $\delta(SiF_3)$        |
|                                    | 740         | 74                   | δ(Si-O-H)              |
|                                    | 782         | 23                   | v(Si-O) +              |
|                                    |             |                      | + v(Si-F)              |
|                                    | 971         | 115                  | v(SiF <sub>3</sub> )   |
|                                    | 996         | 122                  | v(SiF <sub>3</sub> )   |
|                                    | 1030        | 102                  | v(SiF3)                |
|                                    | 3765        | 68                   | v(O-H)                 |
| SiF <sub>2</sub> (OH) <sub>2</sub> | 409         | 23                   | $w(SiF_2)$             |
|                                    | 762         | 17                   | δ(Si-O-H)              |
|                                    | 782         | 135                  | δ(SiOH)                |
|                                    | 786         | 33                   | δ(SiOH)                |
|                                    | 979         | 94                   | v <sub>s</sub> (Si-F)  |
|                                    | <b>98</b> 0 | 135                  | $v_{as}(Si-F) +$       |
|                                    |             |                      | $+ v_{as}(Si - O - H)$ |
|                                    | 1007        | 95                   | $v_{as}(Si-F)$         |
|                                    | 3756        | 77                   | $v_{as}(O-H)$          |
|                                    | 3759        | 37                   | v <sub>s</sub> (OH)    |
| SiF₄ · H₂O                         | 420         | 64                   | $w(H_2O)$              |
|                                    | 494         | 15                   | τ(H <sub>2</sub> O)    |
|                                    | 759         | 0                    | v(SiF <sub>4</sub> )   |
|                                    | 943         | 140                  | v(Si-F)                |
|                                    | 996         | 121                  | v(Si-F)                |
|                                    | 1012        | 121                  | v(Si-F)                |
|                                    | 1593        | 36                   | δ(H—O—H)               |
|                                    | 3663        | 12                   | v(O—H)                 |
|                                    | 3758        | 34                   | v(O-H)                 |

Note. The following notations were used:  $\delta$ , deformation; v, stretching; v<sub>s</sub>, symmetric stretching; v<sub>as</sub>, antisymmetric stretching; w, wagging; and  $\tau$ , torsional vibrations.



Fig. 2. IR spectra of gaseous SiF<sub>4</sub> in the region  $3050-2650 \text{ cm}^{-1}$ : *a*, without D<sub>2</sub>O impurity; and *b*, with a D<sub>2</sub>O impurity (l = 20 cm, with a resolution of 0.1 cm<sup>-1</sup>).



Fig. 3. Molecular structures of possible products of SiF<sub>4</sub> hydrolysis calculated by the *ab initio* B3LYP/6-311G(d,p) method: SiF<sub>3</sub>OH (1), SiF<sub>2</sub>(OH)<sub>2</sub> (2), and complex SiF<sub>4</sub>  $\cdot$  H<sub>2</sub>O (3). Bond lengths (Å) and bond angles are shown.

96

All calculated structures contain one or two O–H bonds whose vibrational frequencies lie in the interval  $3756-3765 \text{ cm}^{-1}$  (see Table 2) and fall within the region of a broad structureless band with the center at  $3764 \text{ cm}^{-1}$  observed in the IR spectrum of gaseous SiF<sub>4</sub>. The structureless shape of this band and increase in its intensity with time and with increasing temperature is explained by the presence of at least three compounds, of which two are products of hydrolysis. The possible presence of several intermediate complexes of SiF<sub>4</sub> with water also favors the broadening of the band near  $3764 \text{ cm}^{-1}$  and the increase in its intensity.

To prove experimentally the assumption that the bands in the region 3700-3900 cm<sup>-1</sup> correspond to hydroxyl-containing products of hydrolysis of SiF<sub>4</sub>, the spectra of a solution of H<sub>2</sub>O and SiF<sub>4</sub> in CCl<sub>4</sub> (Fig. 4, a) were studied. Addition of small amounts of gaseous SiF<sub>4</sub> to the solution has virtually no effect on the spectral pattern; however, the dissolution of an excess SiF<sub>4</sub> (relative to water) results in a change in the shape of the v<sub>1</sub> and v<sub>3</sub> bands (Fig. 4, b, c). A new band appears near 3685 cm<sup>-1</sup> and reaches its maximum after about 24 h, whereas the intensities of the v<sub>1</sub> and v<sub>3</sub> bands decrease sharply. Most likely, this band should be assigned to OH-containing products of the SiF<sub>4</sub> hydrolysis formed according to Eq. (4)



or, in the simplest case,

$$SiF_4 + H_2O \implies SiF_3OH + HF.$$
(5)

Analogous changes in the region near  $3685 \text{ cm}^{-1}$  are observed in the IR spectrum of the solution of a mixture of SiF<sub>4</sub> and methanol in CCl<sub>4</sub> (Fig. 5, *a*, *b*). In this case a new band near  $3685 \text{ cm}^{-1}$  is also recorded, while the intensity of the band at  $3645 \text{ cm}^{-1}$  corresponding to the vibration of the methanol O—H bond remains rather high even 24 h after the moment of mixing both substances. It is likely that a reaction analogous to that described by Eq. (4) occurs in CCl<sub>4</sub>:

$$SiF_4 + MeOH \longrightarrow SiF_3OH + MeF,$$
 (6)

and that the degree of alcoholysis is considerably lower than that of hydrolysis.

Thus, the results of our IR spectroscopic and quantum-chemical study make it possible to refine the known scheme of hydrolysis of  $SiF_4$  (Eq. (1)) in the presence of small amounts of water. As follows from the IR spectra in the low-temperature matrix and from quantum-chemi-

 $\begin{array}{c}
 A \\
 0.5 \\
 0.4 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\
 0.3 \\$ 

Fig. 4. IR spectra of the solution of a mixture of SiF<sub>4</sub> and water in CCl<sub>4</sub>: *a*, immediately after mixing  $(v_1(H_2O) \text{ is } 3710 \text{ cm}^{-1} \text{ and } v_3(H_2O) \text{ is } 3616 \text{ cm}^{-1})$ ; *b*, after 1 h from the beginning of the reaction (v(OH) is 3685 \text{ cm}^{-1}); and *c*, after 24 h from the beginning of the reaction  $(l = 5 \text{ cm}, \text{ with a resolution of } 4 \text{ cm}^{-1})$ .

Fig. 5. IR spectra of the solution of a mixture of SiF<sub>4</sub> and methanol in CCl<sub>4</sub> in the region  $3500-3800 \text{ cm}^{-1}$ : *a*, immediately after mixing (v(OH) is  $3645 \text{ cm}^{-1}$ ); and *b*, after 24 h from the beginning of the reaction (l = 5 cm, with a resolution of  $4 \text{ cm}^{-1}$ , T = 290 °C). The spectra were smoothed by approximating the band contours by the Voight function.

cal calculations, in the initial stage the donor-acceptor complex  $SiF_4 \cdot H_2O$  is formed. This leads to a decrease in the activation barrier to the reactions of the formation of hydroxyl-containing  $SiF_4$  derivatives (in particular, trifluorosilanol):

$$SiF_4 + H_2O \longrightarrow SiF_4 \cdot H_2O \longrightarrow SiF_3OH + HF.$$
 (7)

The band at 3685 cm<sup>-1</sup> in the IR spectrum of SiF<sub>4</sub> in CCl<sub>4</sub> and the band at 3764 cm<sup>-1</sup> in the IR spectrum of gaseous SiF<sub>4</sub> corresponds to a SiF<sub>3</sub>OH molecule or, in the general case, to a SiF<sub>4-x</sub>(OH)<sub>x</sub> molecule. In both cases these bands lie between those of symmetric and antisymmetric vibrations of water molecules.

Intense bands at 838 and 912  $\text{cm}^{-1}$  corresponding to vibrations of the hexafluorodisiloxane molecule indicate that a further hydrolysis occurs following the scheme

$$SiF_3OH + SiF_4 \implies Si_2F_6O + HF.$$
 (8)

Judging by the obtained IR spectra of gaseous SiF<sub>4</sub> in the presence of water vapors, both the initial compounds SiF<sub>4</sub> and H<sub>2</sub>O and the hydrolysis products SiF<sub>3</sub>OH, SiF<sub>2</sub>(OH)<sub>2</sub>, Si<sub>2</sub>F<sub>6</sub>O, and HF and, possibly, the intermediate complex SiF<sub>4</sub>  $\cdot$  H<sub>2</sub>O are in equilibrium.

The authors express their gratitude to A. D. Bulanov and V. V. Balabanov for submitting specimens of silicon tetrafluoride and useful discussion.

This work was financially supported by the International Center — Foundation of Advanced Investigations at Nizhnii Novgorod (Grant 98-3-02).

## References

- A. V. Loginov and E. K. Garbar, Vysokochist. Veshchestva, 1989, No. 5, 27 [High-Purity Substances, 1989 (Engl. Transl.)].
- 2. J. W. Mitchel, Solid State Technol., 1985, 28, No. 3, 131.
- M. F. Sviderskii, O. D. Khorozova, G. I. Dovganich, and V. A. Ivanova, *Vysokochist. Veshchestva*, 1994, No. 1, 130 [*High-Purity Substances*, 1994 (Engl. Transl.)].
- 4. W. D. Reents, D. L. Wood, and A. M. Mujsce, Anal. Chem., 1985, 57, 104.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogie, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, *Gaussian 94, Revision D. 1*, Gaussian, Inc., Pittsburgh (PA), 1995.
- L. Margrave, K. G. Sharp, and P. W. Wilson, J. Am. Chem. Soc., 1970, 92, 1530.
- 7. B. S. Ault, J. Am. Chem. Soc., 1983, 105, 5742.
- 8. C. W. Bauschlicher and H. Partridge, J. Chem. Phys., 1995, 103, 1788.
- L. N. Sverdlov, M. A. Kovner, and E. V. Krainov, Kolebatel'nye spektry mnogoatomnykh molekul [Vibrational Spectra of Polyatomic Molecules], Nauka, Moscow, 1970 (in Russian).
- R. C. McDowell, M. J. Reisfeld, C. W. Patterson, B. J. Krohn, M. C. Vasquez, and G. A. Laguna, J. Chem. Phys., 1982, 77, 9.

Received March 19, 1998; in revised form May 13, 1998