Al-, Nb-, and Ta-Based Perfluoroaryloxide Anions as **Cocatalysts for Metallocene-Mediated Ziegler-Natta Olefin Polymerization**

Yimin Sun, Matthew V. Metz, Charlotte L. Stern, and Tobin J. Marks*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113

Received December 1, 1999

Summary: Perfluoroaryloxide salts of the formula Ph₃C⁺- $Al(OC_6F_5)_4^-$ and $Ph_3C^+M(OC_6F_5)_6^-$ (M = Nb, Ta) have been synthesized and characterized. In combination with sterically encumbered zirconocene dimethyl complexes, they yield active ethylene polymerization catalysts.

Current generation abstractors/cocatalysts for homogeneous single-site olefin polymerization¹ are typically group 13-based and contain metal/metalloid-carbon bonds, e.g., methylalumoxane (MAO),² MAr_x^FAr_{3-x},³ $M(C_6F_4-2-C_6F_5)_{3,4}$ MAr_4^{F-} (M = B, Al).⁵ Due to their structurally well-defined chemical nature and high cocatalytic activity, the perfluoroarylboranes, -borates, and -aluminates are of considerable current scientific and technological interest. Results to date reveal that many of the properties of such catalyst systems are intimately connected with the nature of the cationanion interaction in ways that are not well-understood. The size, shape, electronic structure, and ligational characteristics of the anion can have a profound effect on catalyst activity, thermal stability, chain transfer characteristics, stereoselection, etc.^{2a,3a-c,4,5a,6} The num-

(2) (a) Coevoet, D.; Cramail, H.; Deffieux, A. Macromol. Chem. Phys. 1998, 199, 1459-1464, and references therein. (b) Reddy, S. S.; Sivaram, S. Prog. Polym. Sci. 1995, 20, 309-367. (c) Harlan, C. J.; Bott, S. G.; Barron, A. R. J. Am. Chem. Soc. 1995, 117, 6465-6474. (d) Sishta, C.; Hathorn, R.; Marks, T. J. J. Am. Chem. Soc. 1992, 114,

1112-4. (e) Pasynkiewicz, S. *Polyhedron* 1990, *9*, 429–453.
(3) (a) Luo, L.; Marks, T. J. In ref 1b, pp 97–106. (b) Li, L.; Marks, T. J. *Organometallics* 1998, *17*, 3996–4003. (c) Deck, P. A.; Beswick, C. L.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1772–1784. (d) Piers, W. E.; Chivers, T. Chem. Soc. Rev. 1997, 26, 345-354. (e) Pellecchia, C.; Pappalardo, D.; Oliva, L.; Zambelli, A. J. Am. Chem. Soc. 1995, 117, 6593–6594. (f) Temme, B.; Erker, G.; Karl, J.; Luftmann, H.; Fröhlich, R.; Kotila, S. Angew. Chem., Int. Ed. Engl. 1995, 34, 1755– **17**57. (g) Yang, X. M.; Stern, C. L.; Marks, T. J. *J. Am. Chem. Soc.* **1994**, *116*, 10015–10031. (h) Bochmann, M.; Lancaster, S. J.; Hurst-

 (4) (a) Chen, Y. X.; Metz, M. V.; Li, L. T.; Stern, C. L.; Marks, T. J.
 J. Am. Chem. Soc. 1998, *120*, 6287–6305. (b) Chen, Y. X.; Stern, C. L.; Yang, S. T.; Marks, T. J. *Am. Chem. Soc.* 1998, *120*, 6287–6305. (b) Chen, Y. X.; Stern, C. L.; Yang, S. T.; Marks, T. J. *J. Am. Chem. Soc.* 1996, *118*, 12451– 12452

ber of available cocatalysts is, however, limited and has so far impeded a broad, systematic study of anion effects. We communicate here the synthesis, characterization, and cocatalytic features of a new series of sterically encumbered metalloid and transition metal cocatalysts/counteranions based on the pentafluorophenoxide group, C₆F₅O⁻. We report that effective cocatalysts need not contain metalloid/metal-carbon bonds and that the properties of the resulting metallocenium cation-anion pairs are sensitive to both the counteranion core structure and the metallocene ancillary ligation.7

Reaction of LiAlH₄ with HOC₆F₅ affords Li⁺Al(OC₆- $F_5)_4^{-,8}$ and subsequent metathesis with Ph₃CCl yields the corresponding trityl tetrakis(pentafluorophenoxo)aluminate, $Ph_3C^+Al(OC_6F_5)_4^-$ (1) (eq 1).⁹ All new com-

$$LiAlH_{4} + 4HOC_{6}F_{5} \xrightarrow[-H_{2}]{-H_{2}}$$
$$LiAl(OC_{6}F_{5})_{4} \xrightarrow{Ph_{3}CCl} Ph_{3}C^{+}Al(OC_{6}F_{5})_{4}^{-} (1)$$
$$1$$

pounds were characterized by conventional spectroscopic and analytical methodology.⁹ Compound 1 is thermally stable at 25 °C in CD₂Cl₂ solution for days without noticeable decomposition. The pentachlorides MCl_5 (M = Nb, Ta) readily undergo reaction with LiOC₆F₅ in Et₂O at 25 °C to afford crystalline [Li- $(OEt_2)_n]^+ \{ [M(OC_6F_5)_4(\mu_2 - OC_6F_5)_2]_2 Li \} \cdot C_7 H_8$ (Scheme 1; M = Nb, n = 4 (2a); M = Ta, n = 3 (2b)) salts.^{9,10} Diffraction results for 2a reveal the quasi-octahedral

J. Organomet. Chem. 1995, 485, 153-160.

^{(1) (}a) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. *Angew. Chem.*, *Int. Ed.* **1999**, *38*, 428–447. (b) Marks, T. J., Stevens, J. C., Eds. *Topics* Catal. 1999, 15 (special issue). (c) Jordan, R. F., Ed. J. Mol. Catal. 1998, 128 (special issue). (d) Kaminsky, W.; Arndt, M. Adv. Polym. Sci. 1997, 127, 144-187. (e) Bochmann, M. J. Chem. Soc., Dalton Trans. 1996, 255-270. (f) Brintzinger, H.-H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143–1170. (g) Soga, K.; Terano, M. In Catalyst Design for Tailor-Made Polyolefins, Soga, K., Terano, M., Eds.; Elsevier: Tokyo, 1994.
 (h) Möhring, P. C.; Coville, N. J. J. Organomet. Chem. 1994, 479, 1–29.

<sup>12452.
(5) (</sup>a) Jia, L.; Yang, X.; Stern, C. L.; Marks, T. J. Organometallics
1997, 16, 842–857. (b) Chien, J. C. W.; Tsai, W.-M.; Rausch, M. D. J. Am. Chem. Soc. 1991, 113, 8570–8571. (c) Yang, X. M.; Stern, C. L.; Marks, T. J. Organometallics 1991, 10, 840–842. (d) Ewen, J. A.; Elder, M. J.; Ewen, J. A.; Elder, M. J. European Patent Appl. p 426637, 1991.
(e) Hlatky, G. G.; Upton, D. J.; Turner, H. W. U.S. Patent Appl. p 459921, 1990.

^{(6) (}a) Lanza, G.; Fragalà, I. L.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 8257-8258. (b) Rhodes, B.; Chien, J. C. W.; Rausch, M. D. Organometallics 1998, 17, 1931–1933. (c) Shiomura, T.; Asanuma, T.; Inoue, N. Macromol. Rapid Commun. 1996, 17, 9-14. (d) Eisch, J. J.; Pombrik, S. I.; Gurtzgen, S.; Rieger, R.; Vzick, W. In ref 1g, pp 221– 235. (e) Giardello, M. A.; Eisen, M. S.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 12114-12129.

⁽⁷⁾ Communicated in part: Sun, Y.; Stern, C. L.; Marks, T. J. Abstracts of Papers; 217th National Meeting of the American Chemical Society, Anaheim, CA, April, 1999; American Chemical Society: Washington, DC, 1999; INOR 14.

⁽⁸⁾ The synthesis of related fluoralkoxide complex Li+[Al[OC(Ph)-(CF₃)₂]₄]⁻ has been reported: Barbarich, T. J.; Handy, S. T.; Miller, S. M.; Anderson, O. P.; Grieco, P. A.; Strauss, S. H. Inorg. Chim. Acta. 1996, 3776.

⁽⁹⁾ See Supporting Information for full synthetic and characterization details.

⁽¹⁰⁾ The synthesis of related *fluoroalkoxide* complexes Ph₃C⁺[Nb-(OCH(CF₃)₂)₆]⁻ and Li⁺[Nb(OCH(CF₃)₂)₆]⁻ has been reported: Rock-well, J. J.; Kloster, G. M.; DuBay, W. J.; Grieco, P. A.; Shriver, D. F.; Strauss, S. H. *Inorg. Chim. Acta* **1997**, 195–200. (11) Amor, J. I.; Burton, N. C.; Cuenca, T.; Gómez-Sal, P.; Royo, P.

$$\begin{split} M &= Nb \ (2a), \ yellow \ crystals. \ Important \ distances (Å) \ and \ angles (°): avg. \ Nb-\mu O \\ &= 2.029(3); \ avg. \ Nb-terminal \ O &= 1.907(3); \ avg. \ Li-O \ 2.038(3); \ O1-Nb-O2 &= 80.03(10); \ O1-Li-O2 \\ &= 79.62(10); \ O3-Nb-O5 &= 176.70(13); \ O4-Nb-O6 &= 94.78(12); \ avg. \ cis \ O-Nb-O &= 89.93(13). \\ M &= Ta \ (2b), \ colorless \ crystals. \ Important \ distances (Å) \ and \ angles (°): \ avg. \ Ta-\mu O \\ &= 2.0320(18); \ avg. \ Ta-terminal \ O &= 1.910(2); \ avg. \ Li-O \ 2.038(2); \ O1-Ta-O2 &= 79.95(7); \ O1-Li-O2 &= 79.66(7); \ O3-Ta-O5 &= 176.19(9); \ O4-Ta-O6 &= 95.38(9); \ avg. \ cis \ O-Ta-O &= 89.91(9). \end{split}$$

$$\begin{split} M &= \text{Nb} \ (\textbf{3a}), \text{ red crystals. Important distances (Å) and angles (°): avg. Nb-O = 1.955(2);}\\ \text{avg. cis O-Nb-O = 90.08(8); avg. trans O-Nb-O = 173.60(8).}\\ M &= \text{Ta} \ (\textbf{3b}), \text{ red crystals. Important distances (Å) and angles (°): avg. Ta-O = 1.952(3);}\\ \text{avg. cis O-Ta-O = 89.9(1); avg. trans O-Ta-O = 174.0(1).} \end{split}$$

nature of the group 5 centers and square-planar Li⁺ coordination (Scheme 1). Compounds **2** are cleanly converted with Ph₃CCl to the corresponding mononuclear, thermally stable Ph₃C⁺M(OC₆F₅)₆⁻ (M = Nb, (**3a**); M = Ta (**3b**)) salts^{9,10} in high yield. Diffraction analysis reveals six-coordinate metal centers with pronounced nonlinearlity of the M–O–C₆F₅ linkages and dispersion in Nb–O distances. For example, the Nb– O–C(aryl) angle ranges from 135.3(2)° to 170.6(2)° and the Nb–O distance from 1.913(2) to 2.009(2) Å.

The reactivity and cocatalytic characteristics of **3** were investigated with respect to a series of metallocene dimethyls. At room temperature, facile $C_6F_5O^-$ transfer from Nb/Ta to Zr/Ti is observed for coordinatively more open complexes such as $(C_5H_5)_2$ ZrMe₂, which reacts readily to form, as assessed by ¹H/¹⁹F NMR spectral comparison with authentic samples, ¹¹ (C_5H_5)₂Zr(OC_6F_5)₂, Ph₃CCH₃, and presumably MeNb(OC_6F_5)₄, as well as unidentified minor byproducts.¹¹ Reaction of **3a** with 1.0 equiv of *rac*-Me₂Si(Ind)₂ZrMe₂ proceeds in a similar fashion with formation of *rac*-Me₂Si(Ind)₂ZrMe(OC_6F_5).⁹ In contrast, the behavior toward sterically encumbered metallocenes, e.g., (C₅Me₄H)₂ZrMe₂ and (C₅Me₅)₂ZrMe₂, is significantly different. Thus, reaction of 3a with 1.0 equiv of each of these metallocenes in toluene- d_8 initially results in red oily products, typical of more ionic (more loosely ion-paired) species, ^{5a} as well as (C₅Me₄H)₂ZrMe- (OC_6F_5) or $(C_5Me_5)_2$ ZrMe (OC_6F_5) , respectively, with the latter assignments confirmed by NMR spectral comparison with authentic samples generated by C₆F₅OH addition to the neutral dimethyl complexes.⁹ On standing at -20 °C, the oily material slowly converts to the metallocenium ion pair [(C5Me5)2ZrOC6F5]+Nb(OC6F5)6-(4; Scheme 2), characterized by diffraction and featuring both unexceptional (C₅Me₅)₂ZrR⁺ metrical parameters^{3f} and a relatively short $Zr^+ \cdots F - C(aryloxide)$ contact (2.342(2) Å) and a correspondingly *elongated* F-C bond distance (1.383(4) vs 1.345(4) Å (av)).^{2e,f,5c,12} This result argues for the intermediacy of [(C₅Me₅)₂ZrMe]⁺Nb-(OC₆F₅)₆⁻, as does observation of [(C₅Me₅)₂ZrMe(THF- $(d_8)^+$ Nb(OC₆F₅)₆⁻ (**5**)¹³ in reaction of **3a** with (C₅Me₅)₂- $ZrMe_2$ in THF- d_8 and the olefin polymerization activity (vide infra). The instability of [(C₅Me₅)₂ZrMe]⁺Nb- $(OC_6F_5)_6^-$ may reflect the aforementioned deformability of the Nb $-O-C_6F_5$ linkages, which would facilitate Nb- $O-C_6F_5$ interaction with, and subsequent $C_6F_5O^-$ transfer to, the electrophilic Zr center.

The above results imply that phenoxide transfer from **3** is facile for sterically open metallocenium systems, explaining why such preactivated catalysts are inactive toward olefin polymerization. However, spectroscopic

⁽¹²⁾ For some related M⁺···F−C examples, see: (a) Sun, Y.; Spence, R. E.v. H.; Piers, W. E.; Parvez, M.; Yap, G. P. A. J. Am. Chem. Soc. **1997**, 119, 5132–5143. (b) Ruwwe, J.; Erker, G.; Fröhlich, R. Angew. Chem., Int. Ed. Engl. **1996**, 35, 80–83. (c) Horton, A. D.; Orpen, A. G. Organometallics **1991**, 10, 3910–3918.

^{(13) &}lt;sup>1</sup>H and ¹⁹F NMR for 5 (THF- d_8 , 23 °C): δ 2.01 (s, 30 H, C₅ Me_5), 0.40 (s, 3 H, Zr-Me). ¹⁹F NMR (THF- d_8 , 23 °C): δ -157.26 (d, 2 F, o-F, $J_{F-F} = 18.1$ Hz), -165.38 (tr, 2 F, p-F, $J_{F-F} = 20.6$ Hz), -169.14 (tr, 1 F, m-F, $J_{F-F} = 22.9$ Hz).

Scheme 2. Proposed Reactivity Pattern of (C₅Me₅)₂ZrMe₂ with Cocatalyst 3a

 $[(C_5Me_5)_2Zr(OC_6F_5)]^*Nb(OC_6F_5)_6^-$ (4) Important distances (Å) and angles (°): Zr-F8 = 2.343(2); Zr-O7 = 1.984(2); F8-C10 = 1.383(4); avg. C-F = 1.345(4); avg. Nb-O = 1.946(3); avg. Zr-Cp(centroid) = 2.219; Cp (centroid)-Zr-Cp(centroid) = 137.8; F8-Zr-O7 = 94.28(9); Zr-F8-C10 = 167.7(2); avg. cis O-Nb-O = 89.98(11), avg. trans O-Nb-O = 176.76(11).

Table 1. Ethylene Polymerization Activities and Polymer Properities^a

entry	precursor	cocatalyst	μ mol of cat.	rxn, time (s)	polymer yield (g)	activity g PE∕atm∙mol∙h	$M_{ m n}{}^b$	$M_{\rm w}/M_{\rm n}$	$T_{\mathrm{m}}{}^{c}$ (°C)
1 2 3 4 5 6 7 8	$\begin{array}{c} (C_5Me_5)_2ZrMe_2\\ (C_5Me_5)_2ZrMe_2\\ (C_5Me_5)_2ZrMe_2\\ (C_5Me_5)_2ZrMe_2\\ (C_5Me_4H)_2ZrMe_2\\ (C_$	$\begin{array}{l} Ph_{3}C^{+}Al(OC_{6}F_{5})_{4}^{-}(1)\\ Ph_{3}C^{+}Nb(OC_{6}F_{5})_{6}^{-}(3a)\\ Ph_{3}C^{+}Ta(OC_{6}F_{5})_{6}^{-}(3b)\\ Ph_{3}C^{+}B(C_{6}F_{5})_{4}^{-}(1)\\ Ph_{3}C^{+}Al(OC_{6}F_{5})_{4}^{-}(1)\\ Ph_{3}C^{+}Nb(OC_{6}F_{5})_{6}^{-}(3a)\\ Ph_{3}C^{+}Ta(OC_{6}F_{5})_{6}^{-}(3b)\\ Ph_{5}C^{+}B(C,F_{5})_{6}^{-}(3b)\\ Ph_{5}C^{+}B(C$	$13.5 \\ 1.27 \\ 1.32 \\ 1.76 \\ 1.81 \\ 1.73 \\ 1.75 \\ 1.72$	30 30 30 30 30 30 30 30	$\begin{array}{c} 0.441 \\ 0.498 \\ 0.561 \\ 0.636 \\ 0.471 \\ 0.549 \\ 0.739 \\ 0.720 \end{array}$	$egin{array}{c} 3.9 imes 10^6 \ 6.0 imes 10^6 \ 6.5 imes 10^6 \ 4.3 imes 10^6 \ 3.1 imes 10^6 \ 4.1 imes 10^6 \ 5.0 imes 10^6 \ 5.1 imes 10^6 \ 5.1 \ 5$	$\begin{array}{c} 62\ 200\\ 45\ 800\\ 79\ 800\\ 88\ 200\\ 127\ 000\\ 106\ 000\\ 62\ 500\\ 22\ 200\end{array}$	$\begin{array}{c} 2.77\\ 3.32\\ 2.48\\ 2.15\\ 1.91\\ 3.30\\ 4.03\\ 7.60\end{array}$	139.8 138.7 136.9 137.9 137.2 136.8 136.5 125.0

^a Carried out at 1.0 atm of ethylene pressure in 100 mL of toluene on a high-vacuum line at 25 °C. See Supporting Information and ref 4a for polymerization procedures. ^b GPC relative to polystyrene standards. ^c DSC trace from the second scan.

observation of ion pair 5 prompted studies of in situ (C5-Me₅)₂ZrMe₂ and (C₅Me₄H)₂ZrMe₂ activation in the presence of olefin (as is commonly performed for unstable $B(C_6F_5)_4$ -based catalysts).⁵ Under such conditions, reaction of 1 and 3 with (C5Me5)2ZrMe2 and (C5Me4H)2-ZrMe₂ at 25 °C affords efficient ethylene polymerization catalysts (Table 1; procedure of refs 3c, 4a), with activities and product polymer properties comparable to those of $Ph_3C^+B(C_6F_5)_4^-$ -activated systems under identical polymerization conditions.⁵ One striking and unprecedented feature of the present catalysts is that high ethylene polymerization activity is not paralleled by propylene polymerization activity. To our knowledge, this is the first report of such an anion-modulated metallocene reactivity pattern.^{1,6} However, propylene incorporation in ethylene + propylene copolymerizations is observed. The ability of the present catalyst systemsto differentiate CH₂=CH₂ and CH₂=CHCH₃ at the activation step may be related to secondary interactions of the anion phenoxide ligands with the cationic metallocene centers. These results demonstrate that neither group 13 elements nor metal/metalloid–C bonds are necessary for effective metallocene olefin polymerization cocatalysts. Additional steric and electronic modifications are the subject of continuing research.

Acknowledgment. This research was supported by the U.S. Department of Energy (DE-FG 02-86 ER13511). Y.S. thanks Dow Chemical Co. for a postdoctoral fellowship. We thank Dr. P. N. Nickias of Dow for gpc analyses.

Supporting Information Available: Experimental procedures and X-ray structural data. This material is available free of charge via the Internet at http://pubs.acs.org.

OM990946L