

Available online at www.sciencedirect.com

Inorganica Chimica Acta 358 (2005) 1798-1806

Inorganica Chimica Acta

www.elsevier.com/locate/ica

Substitution and redox reactions of mono- and dinuclear ruthenium complexes containing the $pyN_2H_2S_2^{2-}$ ligand $[pyN_2H_2S_2^{2-} = 2, 6$ -bis(2-mercaptophenylaminomethyl)pyridine(2-)] $\stackrel{\text{\tiny free}}{\approx}$

D. Sellmann[†], S.Y. Shaban^{*}, A. Rösler, F.W. Heinemann

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstraße 1, D-91058 Erlangen, Germany

Received 14 May 2004; accepted 12 December 2004

Abstract

In quest of ruthenium complexes having [RuN₃S₂] cores, a non-flexible configuration, *trans*-thiolate donors and exchangeable coligand L, [Ru(L)(pyN₂H₂S₂)] complexes have been synthesized [pyN₂H₂S₂²⁻ = 2, 6-bis(2-mercaptophenylaminomethyl) pyridine (2–)]. Treatment of [RuCl₂(CH₃CN)₄] with pyN₂H₂S₂²⁻ gave [Ru(py)(pyN₂H₂S₂)] (1). The pyridine coligand in 1 proved to be labile and could be substituted by either CO or DMSO under normal conditions to give [Ru(CO)(pyN₂H₂S₂)] (2) and [Ru(DMSO)(pyN₂H₂S₂)] (3), respectively. Alternatively, 2 could be obtained directly from [RuCl₂(CH₃CN)₄] and pyN₂H₂S₂²⁻ in the presence of CO, whereas the reaction in the absence of CO gave the dinuclear [Ru(pyN₂H₂S₂)]₂ (8). Treatment of either 2 or 3 with NOBF₄ afforded [Ru^{III}(CO)(pyN₂H₂S₂)]BF₄ ([4]BF₄) and [Ru(NO)(pyN₂H₂S₂)]BF₄ ([5]BF₄), respectively. Treatment of [5]BF₄ with either NEt₄N₃ or N₂H₄ afforded the amide [Ru(NO)(pyN₂H₂S₂)] (6) and the hydrazine [Ru(N₂H₄)(pyN₂H₂S₂)] (7), respectively. Treatment of the dinuclear 8 with either one or two equivalents of NOBF₄ afforded the mixed-valence diruthenium (II,III) [Ru^{III}Ru^{III}(pyN₂H₂S₂)₂]BF₄ ([9]BF₄) and the diruthenium (III) [Ru^{III}Ru^{III}(pyN₂H₂S₂)₂](BF₄) ₂ {[10](BF₄)₂, respectively. The diruthenium (III) complex [10](BF₄)₂ is diamagnetic, which can be ascribed to spin–spin pairing between the two Ru^{III} atoms. A preliminary structure determination of [10](BF₄)₂ supports this observation, indicating a single bond between the two Ru^{IIII} atoms. Novel diruthenium complex of this type could be synthesized more generally by treatment of [RuCl₃(MeSPh)₃] with pyN₂H₂S₂²⁻. All complexes were characterized by spectroscopic methods and elemental analysis. The cations [9]⁺ and [10]²⁺ were characterized by X-ray structure analysis.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Spin-spin pairing; Ru-Ru single bond; Oxidation; Labile coligand

1. Introduction

Structure-function relationships of transition metal complexes are primarily determined by the metal

oxidation state, type and number of the ligand donor atoms, and the structure of the metal ligand core [1]. In quest of metal complexes that combine both structural (metal sulfur sites) and functional (reactivity) features of nitrogenase centers, our interest focuses on complexes with multidentate ligands which contain amine N, thioether S, and thiolate S donors. Important requirements for the activation of N₂ by nitrogenases are considered to be electron-rich metal centers [2] as well as a *trans*-coordination of the thiolate donors [3]. In order to meet these requirements, we have developed the [Ru(pyN₂H₂S₂)] fragment [4]. This fragment was

^{*} Transition metal complexes with sulfur ligands 166. Part 165: D. Sellmann, K. Hein, F.W. Heinemann, *Inorg. Chim. Acta*, 2004, in press.

press. * Corresponding author. Tel.: +49 9131 8527782; fax: +49 9131 8527367.

E-mail address: shaban@anorganik.chemie.uni-erlangen.de (S.Y. Shaban).

[†] Deceased.

found to bind as yet CO, DMSO and PPh₃. The resulting complexes exhibit the thiolate and the amine donors to be in *trans*-position as well as a high electron density at the ruthenium centers, as evidenced by the v(CO)frequency of $[Ru(CO)(pyN_2H_2S_2)]$ (1927 cm⁻¹) [4] but all complexes $[Ru(L)(pyN_2H_2S_2)]$ (L = CO, DMSO, PPh₃) synthesized so far are extremely substitution inert. For example, the synthesis of $[Ru(CO)(pyN_2H_2S_2)]$ from [Ru(DMSO)(pyN₂H₂S₂)] requires 120 °C and 140 bar. Herein, we describe our efforts to synthesize $[Ru(L)(pyN_2H_2S_2)]$ complexes with labile coligand L, which may be substituted by nitrogenase-relevant small molecules. The exchange of L proved to be the major problem. In the course of our investigations, we have isolated a diamagnetic thiolate-bridged dinuclear $[Ru^{III}Ru^{III}(pyN_2H_2S_2)_2](BF_4) \{[10](BF_4)_2\}$ exhibiting spin-spin pairing as well as a single bond between the two Ru^{III} centers. Few examples of thiolate-bridged Ru^{III}Ru^{III} of this type are known, and most of these are limited to complexes containing either Cp* [5] or other bridging ligands (RCO₂⁻, OH⁻, and dppm/Cl⁻) [6] in the coordination sphere.

2. Results and discussion

2.1. Synthesis and reactions of the complexes

Scheme 1 summarizes the syntheses and reactions of $[Ru(pyN_2H_2S_2)]$ complexes.

Treatment of $[RuCl_2(py)_4]$ with $pyN_2H_2S_2-H_2$ in the presence of two equivalents of LiOMe (for deprotonation of the thiol S-H functions) afforded a red $[Ru(py)(pyN_2H_2S_2)]$ (1). The pyridine coligand in complex 1 proved to be labile and could be replaced by either CO or DMSO at room temperature to afford $[Ru(CO)(pyN_2H_2S_2)]$ (2) and $[Ru(DMSO)(pyN_2H_2S_2)]$ (3), respectively. Alternatively, complex 2 could be obtained from [RuCl₂(py)₄] and pyN₂H₂S₂-Li₂ in the presence of an excess of CO at 65 °C. Complex 2 exhibits a v(CO) frequency at 1927 cm⁻¹ in KBr indicating a high electron density at the metal center and a strong Ru-CO bond, and solid 2 is indeed stable at room temperature over prolonged periods of time. Complex 3 proved also substitution inert towards CO, N₂H₄, N₂ or NO ligands. It could not be reacted with CO at room temperature at pressures ranging from 1 to 100 bar. Only under very drastic conditions in an autoclave (140 bar CO, 120 °C), a slow reaction took place to give complex 2 [4].

In attempts to diminish the substitution inertness, complexes **2** and **3** were treated with NOBF₄. On addition of NOBF₄ to a yellow CH_2Cl_2 suspension of **2** at 0 °C, a brown suspension was obtained, from which a brown product was isolated and fully characterized as $[Ru(CO)(pyN_2H_2S_2)]BF_4$ ([4]BF₄) in which the ruthenium (II) was oxidized to ruthenium (III). Complex [4]BF₄ proved as substitution inert as the precursor **2**. For example, treatment of [4]BF₄ with NaBH₄ yielded **2** and showed that the ruthenium oxidation is reversible. In accordance with expectations,

the oxidation of **2** to yield [**4**]BF₄ shifts the v(CO) band to higher frequency (~50 cm⁻¹).

The redox interconversion of **2** and [**4**]BF₄ was also achieved electrochemically. The cyclic voltammogram of **2** exhibits two simple successive redox processes. No reduction waves were observed within the solvent limits. Thus, the redox process observed at $E_{1/2} = +332$ mV is assignable to the Ru^{II}/Ru^{III} couple (**2**/[**4**]BF₄), whereas the other at $E_{1/2} = +737$ mV results from the Ru^{III}/Ru^{IV} couple. The most remarkable feature is the relatively large separation between the two redox potentials (~400 mV), implying that the Ru^{III} complex [**4**]BF₄ is fairly stable.

When a CH_2Cl_2 suspension of [Ru(DMSO)(pyN₂H₂S₂)] (3) was treated with an equimolar amount of NOBF₄, a brown $[Ru(NO)(pyN_2H_2S_2)]BF_4$ ([5]BF₄) was produced. It was surprising to observe such reaction of 3 with NOBF₄ under normal conditions. However, complex [5]BF₄ showed a v(NO) frequency at 1858 cm⁻¹ in KBr and 1870 cm⁻¹ in MeOH and this made the cation [5]⁺ a candidate for attempts to convert the NO into N₂ ligand by addition of nitrogen nucleophiles to the nitrosyl N atom [7]. For this reason, complex [5]BF₄ was treated with NEt₄N₃ and N₂H₄.

Addition of an equimolar amount of NEt₄N₃ to a brown suspension of [5]BF₄ in MeOH yielded gray, sparingly soluble product whose elemental analysis and spectroscopic data were compatible with those for [Ru(NO)(pyN₂HS₂)] (6) with one amide donor. The formation of the amide could further be substantiated by protonation of neutral 6 with HBF₄ to afford isomerically pure [5]BF₄. The deprotonation is accompanied by a shift of the v(N=O) frequency (KBr) from 1858 cm⁻¹ in [5]BF₄ to 1801 cm⁻¹ in 6. The N–H Broensted acidity could further be established by a H⁺/D⁺ exchange reaction. Addition of D₂O to a DMF solution of [5]BF₄ spontaneously afforded [Ru (NO)(pyN₂HDS₂)] as shown by the following equation: [Ru(NO)(pyN₂H₂S₂)]⁺ \rightleftharpoons [Ru(NO)(pyN₂HS₂)] + H⁺

The Broensted acidity was observed only for the nitrosyl complex [5]BF₄ as expected from the ¹H NMR chemical shift of the NH protons (δ 10.5 ppm), which

is deshielded relative to the ca. δ 7.9 ppm shifts of the other complexes. One possible reason for that could be the positive charge of the cation [5]⁺, which facilitates proton loss from the NH leading to amide formation. The limited amide formation of [Ru(pyN₂H₂S₂)] fragments compared to that of [Ru(N₂H₂S₃)] [8] and [Ru(N₃H₃S₂)] [9] fragments could be a consequence of the core structures of [Ru (pyN₂H₂S₂)] complexes that are expected to disfavor the deprotonation of the aromatic N–H function into amide function, as it requires a conversion of tetrahedral four-coordinate N into planar three coordinate or distorted tetrahedral N atoms [10] and this could further explain why the protonation of **6** gave [**5**]BF₄ in only one isomer.

When a brown THF suspension of $[5]BF_4$ was treated with excess of anhydrous N₂H₄, gas was evolved and a red-brown solid was formed, which exhibits a strong band in its IR (KBr) spectrum at around 2037 cm^{-1} , consistent with the formation of a bound azide complex. However, this product was so insoluble in all common solvents that it could not be adequately characterized. An orange solid was formed upon addition of ether to the filtrate, which was isolated and characterized as hydrazine complex $[Ru(N_2H_4)(pyN_2H_2S_2)]$ (7). Complex 7 demonstrates that the $[Ru(pyN_2H_2S_2)]$ fragment can bind "hard" σ coligands. However, 7 proved too labile to be used as a starting material. All efforts to oxidize 7 or to get a N_2 species by the reaction of N_2 with 7 remained as yet unsuccessful, instead dinuclear $[{Ru(pyN_2H_2S_2)}_2]$ (8) was formed.

The dinuclear **8** was found not to react with boiling DMSO, pyridine, or with CO in these solvents. In attempts to diminish the inertness, the dinuclear **8** was treated with different oxidizing agents (see Scheme 2).

Treatment of **8** with one equivalent of NOBF₄ in CH₂Cl₂ afforded the mixed-valence diruthenium (II,III) [Ru^{II}Ru^{III}(pyN₂H₂S₂)₂]BF₄ ([**9**]BF₄). While treatment of **8** with two equivalents of NOBF₄ afforded the diruthenium (III) [Ru^{III}Ru^{III}(pyN₂H₂S₂)₂](BF₄)₂ ([**10**] (BF₄)₂). The ¹H NMR spectroscopy supports the diamagnetic nature of [**10**](BF₄)₂, in which the chemical shifts are within the normal diamagnetic range (1–10 pm). The diamagnetic character of [**10**](BF₄)₂ can be ascribed to the spin–spin pairing between the two Ru^{III} centers. The preliminary structure of [**10**](BF₄)₂

(1)

Scheme 2. Syntheses and reactions of $[\{Ru(pyN_2H_2S_2)\}_2]^{x+}$ complexes (x = 0, 1.2): (a) $+N_2H_4/THF/65$ °C; (b) $+NOBF_4/CH_2Cl_2/20$ °C; (c) $+2NOBF_4/CH_2Cl_2/20$ °C; (d) $+2NOBF_4$ or $I_2/CH_2Cl_2/20$ °C; (e) $+NaBH_4/DMSO/20$ °C; (f) $+[Ru(Cl)_3(MeSPh)_3]/THF/MeOH/65$ °C.

was also confirmed by X-ray structure analysis which shows Ru(III)–Ru(III) single bond distance (280.6(2) pm), consistent with reported values for Ru–Ru single bonds (260–290 pm) [11]. In an alternative way, the cation $[10]^{2+}$ could be synthesized more generally by either treatment of $[Ru(Cl)_3(MeSPh)_3]$ with $pyN_2H_2S_2^{2-}$ or treatment of **8** with I₂. The electrochemistry of $[10](BF_4)_2$ was studied by cyclic voltammetry. Only one reduction process was observed within the solvent limit at $E_{1/2} = -438$ mV, which is assignable to the Ru^{III}Ru^{III}/Ru^{II}Ru^{III} couple ($[10]^{2+}/[9]^+$). No oxidation waves were observed within the solvent limits. The most remarkable feature is the high potential of the Ru^{III}Ru^{III}/Ru^{III}Ru^{III} couple as well as the absence of a further reduction process Ru^{II}Ru^{III}/Ru^{II}Ru^{II} couple, indicating that the Ru^{II}Ru^{III} complex $[9]BF_4$ is fairly stable.

2.2. Characterization and general properties of the complexes

As far as possible, all complexes have been characterized by common spectroscopic methods and by elemental analysis. All mononuclear complexes 2, 3, [4]BF₄, $[5]BF_4$, 6 and 7 as well as the dinuclear $[9]BF_4$ and $[10](BF_4)_2$ show moderate solubility in DMF and DMSO, while complex 1 is soluble only in pyridine and dinuclear 8 was found to be insoluble in all common solvents. Consequentially, no NMR spectra of 8 could be recorded and this complex could be only characterized by its IR and mass spectra and elemental analysis. The IR spectra in KBr show weak v(N-H) bands in the range from 3284 to 3140 cm^{-1} , besides the characteristic bands of the coligands. For example, strong v(CO)absorption bands at 1927 and 1975 cm^{-1} characterize complexes 2 and [4]BF₄, respectively. Strong v(NO)bands at 1858 and 1801 cm⁻¹ characterize the nitrosyl complexes $[5]BF_4$ and 6, respectively. Characteristic strong v(B-F) bands are seen for [4]BF₄ (1083 cm⁻¹), $[5]BF_4$ (1064 cm⁻¹), $[9]BF_4$ (1069 cm⁻¹) and $[10](BF_4)_2$ (1074 cm^{-1}) , respectively.

The FD mass spectra exhibit either peaks for the molecular ions or ions resulting from loss of the coligands. The ${}^{13}C{}^{1}H$ NMR spectra proved the most suitable spectroscopic probe for determining the symmetry of the complexes. Nine plus one ${}^{13}C$ NMR signals for the aromatic and the methylene C atoms of the chelate ligands clearly indicate C_2 -symmetry for all mononuclear complexes.

The ¹H NMR spectrum of $[10](BF_4)_2$ supports the diamagnetic nature of structure $[10](BF_4)_2$, indicating spin–spin pairing between the two Ru^{III} centers. The chemical shifts are within the normal diamagnetic range (0–10 ppm). Seventeen and two ¹³C NMR signals for the aromatic and the methylene C atoms for $[10](BF_4)_2$ indicate C_1 -symmetry. The ¹H NMR spectra, too, are con-

Fig. 1. The CH₂ region in ¹H NMR of: (a) 1 in pyridine- $d_5(\bullet = H_2O$ in pyridine- d_5); (b) [10](BF₄)₂ in DMSO- d_6 .

sistent with C_2 -symmetry for all mononuclear complexes and C_1 -symmetry for $[10](BF_4)_2$. For example, the chemically equivalent CH₂ protons of the free ligand become magnetically nonequivalent in all mononuclear complexes giving rise to two doublets and the lower field doublet further splits into a doublet of doublets due to coupling with the adjacent NH proton. For $[10](BF_4)_2$, the methylene protons are appearing as two doublets and two doublets of doublets in the low field, indicating C_1 -symmetry (Fig. 1).

2.3. X-Ray structure determination of $[\{Ru(pyN_2H_2S_2)\}_2]$ $Cl \cdot 4MeOH ([9]Cl \cdot 4MeOH)$ and $[\{Ru(pyN_2H_2S_2)\}_2]$ $(BF_4)_2 \cdot 2DMSO \cdot acetone \cdot n-hexane ([10](BF_4)_2 \cdot 2D-MSO \cdot acetone \cdot n-hexane)$

The structure of $[Ru(pyN_2H_2S_2)]_2Cl \cdot 4MeOH$ ([9]Cl · 4MeOH) and a preliminary structure of $[{Ru(pyN_2H_2S_2)}_2](BF_4)_2 \cdot 2DMSO \cdot acetone \cdot n-hexane$ ([10](BF₄)₂ · 2DMSO · acetone · n-hexane) were determined by X-ray crystallography. [10](BF₄)₂ proved to be very difficult to obtain suitable single crystals. A number of structure determinations attempted so far resulted always in high residual electron density maxima close to the two central ruthenium atoms and showed the presence of numerous solvent molecules. However, the overall connectivity and geometry of [10](BF₄)₂ could be established (Fig. 3).

Selected bond distances and angles are listed in Table 1. Complexes [9]Cl and [10](BF₄)₂ contain two C_2 -symmetrical [Ru(pyN₂H₂S₂)] units which are coupled through thiolate bridges. Each Ru atom is pseudo-octahedrally coordinated by three S and three N donor atoms. The two thiolate as well as the two amine donors

Fig. 2. Molecular structure of the cation of $[{Ru(pyN_2H_2S_2)}_2|C| \cdot 4-MeOH ([9]C| \cdot 4MeOH) (50\% probability ellipsoids, C-bound H atoms, anions and solvents omitted).$

of the pyN₂H₂S₂ ligand occupy pairwise trans-positions, thus proving the steric rigidity of the $py(CH_2)_2$ backbone. The monocation $[{Ru(pyN_2H_2S_2)}_2]^+$ contains two homochiral centers which are rotated against each other by 84.2° and the dimeric complex thus possesses C_1 -symmetry. Distances and angles show no anomalies. The Ru···Ru distance of [9]Cl·4MeOH [324.6(1) pm] does not indicate a Ru-Ru bonding interaction, while the $Ru \cdot \cdot Ru$ distance of $[10](BF_4)_2 \cdot 2DMSO \cdot ace$ tone \cdot *n*-hexane [280.6(2) pm] is in the range of the reported Ru-Ru single bonds (260-290 pm) [11]. The Ru–NH distances in [9]Cl \cdot 4MeOH (mean value \sim 216.3 (7) pm) are distinctly longer than the Ru–N (pyridine) distance (~202.0 (7) pm). It is also noted that the Ru1-S5 and Ru2-S2 distances (mean value 237.4 (2) pm) in the Ru-S(thiolate)-Ru bridges are of the same length as the Ru–S(thiolate) distances (mean value 236.3 (3) pm) within the two $[Ru(pyN_2H_2S_2)]$ halves.

Table 1

Selected bond distances and angles of $[{Ru(pyN_2H_2S_2)}_2]Cl \cdot 4MeOH$ ([9]Cl · 4MeOH) and $[{Ru(pyN_2H_2S_2)}_2](BF_4)_2 \cdot 2DMSO \cdot acetone \cdot$ *n* $-hexane ([10](BF_4)_2 \cdot 2DMSO \cdot acetone \cdot$ *n*-hexane)

Complex	[9]Cl · 4MeOH	$[10](BF_4)_2 \cdot 2DMSO \cdot acetone \cdot n-hexane^a$
Ru1–N1	217.8 (6)	216.2 (8)
Ru1–N2	217.8 (6)	216.9 (8)
Ru1–N3	202.0 (7)	204.8 (8)
Ru1–S1	234.7 (3)	240.2 (3)
Ru1–S2	237.2 (2)	229.7 (3)
Ru1–S5/S2A	237.5 (2)	231.4 (3)
Ru1–Ru1A/Ru2	324.6 (1)	280.6 (2)
N1–Ru1–S1	85.2 (2)	83.7 (2)
N2–Ru1–S1	90.5 (2)	95.2 (3)
N2–Ru1–S2	84.2 (2)	84.9 (3)
N3–Ru1–N1	78.8 (2)	79.0 (3)
N3–Ru1–S1	88.3 (2)	81.8 (3)
N3–Ru1–S5/S2A	177.6 (2)	166.2 (3)

^a Preliminary data.

Fig. 3. The overall connectivity and geometry of the cation $[10]^{2+} \cdot 2DMSO \cdot acetone \cdot n$ -hexane, as obtained from a preliminary X-ray structure determination.

This certainly reflects the stability of this dinuclear complex towards dissociation into $[Ru(pyN_2H_2S_2)]$ monomers both in solution and in solid state (see Fig. 2).

3. Conclusion

The results reported herein demonstrate that the $pyN_2H_2S_2^{2-}$ ligand forms ruthenium complexes possessing $[Ru(pyN_2H_2S_2)]$ cores that exhibit the desired configuration with thiolate donors in *trans*-position and that are structurally robust. The pyridine coligand in $[Ru(py)(pyN_2H_2S_2)]$ (1) was found to be labile and complex 1 can serve as a precursor for other complexes $[Ru(L)(pyN_2H_2S_2)]$ [L = CO (2), DMSO (3)]. The CO coligand in 2 was found to be substitution inert and could not be replaced by NO⁺, instead oxidation occurred to give [4]BF₄. The DMSO coligand in 3 could be replaced by NO^+ to give [5]BF₄. Complex [5]BF₄ showed reversible deprotonation of one amine NH function to give an amide donor ligand. The reaction of the nitrosyl complex $[5]BF_4$ with N_2H_4 gave the hydrazine complex 7, indicating that the $[Ru(pyN_2H_2S_2)]$ fragment can bind "hard" σ coligands.

In the course of our investigations, a series of thiolatebridged diruthenium complexes $[Ru^{II}Ru^{II}(pyN_2H_2S_2)_2]$ (8), mixed-valence diruthenium (II,III) $[Ru^{II}Ru^{III}$ $(pyN_2H_2S_2)_2]BF_4$ ([9]BF_4) and diruthenium (III) $[Ru^{III}Ru^{III}(pyN_2H_2S_2)_2](BF_4)$ {[10](BF_4)_2} have been isolated and completely characterized. The diruthenium (III) [10](BF_4)_2 is diamagnetic and the diamagnetic nature is assignable to a spin–spin pairing as well as a single bond between the two Ru^{III} centers. Few examples of thiolate-bridged Ru^{III}Ru^{III} dimers possessing a spin– spin pairing as well as a single bond between the two Ru^{III} atoms exist, and these are limited to complexes containing Cp* in the coordination sphere [5]. Ru^{III}Ru^{III} dimers of this type containing other bridging ligands $(\text{RCO}_2^-, \text{OH}^-, \text{ and dppm/Cl}^-)$ have been reported [6], but only very few examples of a thiolato-bridged $\text{Ru}^{\text{III}}\text{Ru}^{\text{III}}$ dimeric complex that does not contain Cp* in the coordination sphere are known [5]. The first example of this type that does not contain Cp* in the coordination sphere has been reported by Cameron et al. [11]. Recently, an intermediate complex in the catalytic transformation of organic disulfides, [Cp*RuCl(μ -SPh)]₂, which also has a Ru^{III}–Ru^{III} single bond, has been isolated [12].

4. Experimental

4.1. General

Unless noted otherwise, all procedures were carried out under an atmosphere of N_2 using Schlenk techniques. Solvents were dried and distilled before use. As far as possible, reactions were monitored by IR or NMR spectroscopy. Spectra were recorded on the following instruments: IR (KBr discs or CaF₂ cuvettes, solvent bands were compensated): Perkin-Elmer 983, 1620 FT IR, and 16PC FT-IR; NMR: Jeol-JNM-GX 270, EX 270, and Lambda LA 400 with the protiosolvent signal used as an internal reference. Spectra were recorded at 25 °C; Mass spectra: Jeol MSTATION 700 spectrometers; Elemental analyses: Carlo Erba EA 1106 or 1108 analyzer; Cyclic voltammetry was performed with a Radiometer Copenhagen IMT 102 electrochemical interface using a three electrode cell with a glassy carbon (Radiometer Copenhagen EDI) working electrode and Pt reference and counter electrodes. Solutions were 10^{-3} M; NBu₄[PF₆] (10^{-1} M) was used as the supporting electrolyte. Potentials were referenced to the normal hydrogen electrode (NHE) using Fc/Fc^+ as an internal standard $E(Fc/Fc^{+}) = +400 \text{ mV}$ versus NHE [13]. [RuCl₂(CH₃CN)₄] [14], [RuCl₂(py)₄] [15], $[Ru(Cl)_3(MeSPh)_3]$ [16] and $pyN_2H_2S_2-H_2$ [4] were prepared as described in the literature. Anhydrous hydrazine was obtained by twofold distillation of hydrazine hydrate over KOH under reduced pressure. LiOMe was purchased from Aldrich.

4.2. Syntheses

4.2.1. $[Ru(py)(pyN_2H_2S_2)]$ (1)

A suspension of $[Ru(Cl)_2(py)_4]$ (306 mg, 0.63 mmol) and $pyN_2H_2S_2$ -Li₂ (230 mg, 0.63 mmol) in MeOH was heated at 65 °C for 3 h and stirred at 20 °C for 12 h. The resultant red solid was separated, washed with MeOH (10 ml) and dried in vacuo. Yield: 340 mg of $[Ru(py)(pyN_2H_2S_2)] \cdot 0.5MeOH$ (98%). ¹H NMR ($[D_5]$ pyridine, 269.73 MHz): $\delta = 9.23$ (d, 2H, 2N*H*), 8.54 (d, $J_{\rm HH} = 5.4$ Hz, 2H, H_{α} , pyridine), 8.00–7.94 (m, 2H, H_{γ} , pyridine), 7.73–7.62 (m, 2H, H_{β} , pyridine), 7.02–6.25 (m, 10H, C₆ $H_4 + H_\beta$, pyridine), 5.15–5.05 (m, 2H, CH*H*), 4.62–450 (d, 2H, C*H*H₂). ¹³C{¹H} NMR ([D₅]pyridine, 100.4 MHz): δ = 159.9, 159.3, 155.3, 150.3, 149.5, 135.9, 132.7, 129.0, 126.9, 132.9, 120.5, 118.3 [C(aryl)], 69.4 (*C*H₂). IR (KBr): v(tilde) = 3244 (w, N–H) cm⁻¹. MS (FD⁺, pyridine): *m*/*z* = 452 [Ru(pyN₂H₂S₂)]⁺. Calc. for C_{24.5}H₂₄N₄O_{0.5}RuS₂ (547.69): C, 53.73; H, 4.42; N, 10.22. Found: C, 53.41; H, 4.14; N, 10.05%.

4.2.2. $[Ru(CO)(pyN_2H_2S_2)]$ (2)

(a) From 1: CO gas was bubbled through a red suspension of 1 (100 mg, 0.19 mmol) in THF (25 ml) for 5 h in the course of which a yellow solid was precipitated, which was separated, washed with THF (20 ml) and CH₂Cl₂ (20 ml) and dried in vacuo. Yield: 80 mg of [Ru(CO)(pyN₂H₂S₂)] \cdot 0.2CH₂Cl₂ (85%). Calc. for C_{20.2}H_{17.4}Cl_{0.4}N₃ORuS₂ (497.57): C, 48.68; H, 3.68; N, 8.43; S, 12.87. Found: C, 48.78; H, 3.65; N, 8.44%.

(b) From $pyN_2H_2S_2$ -H₂: At -78 °C, n-BuLi (0.34 ml, 0.85 mmol of 2.5 M solution in *n*-hexane) was added to a solution of pyN₂H₂S₂-H₂ (150 mg, 0.42 mmol) in THF (60 ml). After warming to room temperature, the solution was combined with a solution of [Ru(Cl)₂(CH₃CN)₄] (143 mg, 0.42 mmol) in MeOH (30 ml) and heated at 65 °C under bubbling CO for 5 h. The resultant yellow solid was separated, washed with MeOH, THF, CH₂Cl₂ and Et₂O (each 10 ml) and dried in vacuo. Yield: 180 mg of $[Ru(CO)(pyN_2H_2S_2)]$. 0.2CH₂Cl₂ (86%). ¹H NMR ([D₆]DMSO, 269.73 MHz): δ = 8.37 (d, 2H, 2N*H*), 7.75 (t, *J*_{HH} = 7.7 Hz, 1H, *H*_{γ}, pyridine), 7.40 (d, $J_{\rm HH}$ = 7.9 Hz, 2H, H_{β} , pyridine), 7.14–7.11 (m, 4H, C_6H_4), 6.80–6.78 (m, 4H, C_6H_4), 4.84 (dd, 2H, CHH), 4.48 (d, 2H, CHH). ${}^{13}C{}^{1}H{}$ NMR ([D₆]DMSO, 100.4 MHz): $\delta = 207.2$ (C=O), 155.5, 149.9, 149.1, 137.3, 129.9, 126.1, 125.0, 120.5, 120.2 (C[aryl]), 69.2 (CH₂). IR (KBr): v(tilde) = 3284(w, N–H), 1927 (vs, C=O) cm^{-1} . MS (FD, DMSO): m/z = 481 $[Ru(CO)(pyN_2H_2S_2)]^+$. Calc. for C_{20.2}H_{17.4}Cl_{0.4}N₃ORuS₂ (497.57): C, 48.68; H, 3.68; N, 8.43; S, 12.87. Found: C, 48.81; H, 3.20; N; 8.75; S, 12.80%.

4.2.3. $[Ru(DMSO)(pyN_2H_2S_2)]$ (3)

A red solution of 1 (64 mg, 0.12 mmol) in DMSO (10 ml) was stirred for 48 h. The resulting yellow solution was concentrated to 5 ml and combined with THF (20 ml). The resulting yellow solid was isolated, washed with THF (20 ml), Et₂O (40 ml) and dried in vacuo. Yield: 54 mg of [Ru(DMSO)(pyN₂H₂S₂)] · DMSO (56%). ¹H NMR ([D₆]DMSO, 269.73 MHz): δ = 7.47 (m, 3H, H_{γ} , pyridine + 2NH), 7.26–7.18 (m, 6H, Ar–H), 6.74–6.68 (m, 4H, Ar–H), 4.65(dd, 2H, CHH), 4.28 (d, 2H, CHH), 3.15 (s, 3H, CH₃S(O)CH₃), 2.75 (s, 3H, CH₃S(O)CH₃). ¹³C{¹H} NMR ([D₆]DMSO, 100.4 MHz): δ = 156.78, 150.54, 149.99, 134.3, 130.0,

125.7, 125.2, 119.7, 119.4 (*C*[aryl]), 68.7 (*C*H₂), 46.33, 44.20 (DMSO). IR (KBr): v(tilde) = 3110 (w, N–H), 1012 (s, S=O) cm⁻¹. MS (FD, DMSO): m/z = 453 [Ru(pyN₂H₂S₂)]⁺. Calc. for C₂₃H₂₉N₃ORuS₄ (592.83): C, 46.60; H, 4.93; N, 7.09; S, 21.64. Found: C, 46.45; H, 4.85; N, 7.00; S, 21.60%.

4.2.4. $[Ru(CO)(pyN_2H_2S_2)]BF_4([4]BF_4)$

At 0 °C, solid NOBF₄ (10 mg, 0.062 mmol) was added to a yellow suspension of **2** (30 mg, 0.062 mmol) in CH₂Cl₂ (10 ml). The reaction mixture was stirred at 0 °C for 4 h and at 20 °C for 30 min. The resultant brown solid was collected by filtration, washed with Et₂O (20 ml) and dried in vacuo. Yield: 25 mg of [Ru(CO)(pyN₂H₂S₂)]BF₄ · 0.5CH₂Cl₂ (70.64%). IR (KBr): v(tilde) = 3240 (w, N–H), 1975 (vs, CO), 1083 (vs, B–F) cm⁻¹. MS (FD, CH₂Cl₂): m/z = 481 [Ru(CO) (pyN₂H₂S₂)]⁺. Calc. for C_{20.5}H₁₈BClF₄N₃ORuS₂ (609.88): C, 40.37; H, 2.97; N, 6.90; S, 10.50. Found: C, 40.41; H, 2.96; N, 7.20; S, 10.71%.

4.2.5. $[Ru(NO)(pyN_2H_2S_2)]BF_4([5]BF_4)$

A mixture of NOBF₄ (73 mg, 0.62 mmol) and $[Ru(DMSO)(pyN_2H_2S_2)]$ (330 mg, 0.62 mmol) in CH₂Cl₂ (20 ml) was stirred at 20 °C for 48 h. The resultant brown solid was separated by filtration, washed with CH₂Cl₂ (20 ml) and *n*-hexane (20 ml) and dried in vacuo. Yield: 290 mg of $[Ru(NO)(pyN_2H_2S_2)]$ BF₄. $1.5 \text{CH}_2 \text{Cl}_2 \cdot 0.75 n$ -hexane (61%). ¹H NMR ([D₆]DMSO, 269.73 MHz): $\delta = 10.57$ (d, 2H, 2NH), 8.00 (t, $J_{\rm HH} = 7.7, 1 \text{H}, \text{H}_{\gamma}$, pyridine), 7.64 (d, $J_{\rm HH} = 7.7, 2 \text{H},$ H_{B} , pyridine), 7.42 (m, 2H, $C_{6}H_{4}$), 7.24 (m, 2H, C₆H₄), 7.08 (m, 4H, C₆H₄), 5.33 (dd, 2H, CHH), 4.94 $^{13}C{^{1}H}$ CHH). NMR ([D₆]DMSO, (d, 2H, 100.4 MHz): $\delta = 156.0, 147.9, 147.3, 141.78, 132.1,$ 129.1, 125.3, 124.1, 122.6 (C[aryl]), 69.5 (CH₂). IR (KBr): v(tilde) = 3218 (w, N-H), 1858 (vs, NO), 1064 (vs, B–F) cm⁻¹. MS (FD, CH₂Cl₂): m/z = 483 [Ru(NO) $(pyN_2H_2S_2)$]⁺. Calc. for $C_{25}H_{30.5}BCl_3F_4N_4ORuS_2$ (761.41): C, 39.44; H, 4.03; N, 7.36. Found: C, 39.53; H, 3.76; N, 7.56%.

4.2.6. $[Ru(NO)(pyN_2HS_2)]$ (6)

A mixture of NEt₄N₃ (0.60 mg, 0.33 mmol) and [Ru(NO)(pyN₂H₂S₂)]BF₄ (185 mg, 0.33 mmol) in MeOH (20 ml) was stirred at 20 °C for 4 h in the course of which a gray solid was formed which was collected by filtration, washed with MeOH, H₂O and Et₂O (each 20 ml) and dried in vacuo. Yield: 100 mg [Ru(NO) (pyN₂HS₂)] · 2.5H₂O (64%). ¹H NMR ([D₇]DMF, 269.7 MHz): δ = 7.76 (t, 1H, H_γ, pyridine), 7.50 (d, 2H, C₆H₄), 7.19 (d, 4H, C₆H₄), 6.93 (t, 3H, C₆H₄), 6.80 (b, 1H, NH), 5.52 (d, 2H, CH H), 5.10 (d, 2H, CHH). IR (KBr) v(tilde) = 1801 (vs, NO) cm⁻¹. MS (FD⁺, CH₂Cl₂): m/z = 482 [Ru(NO)(pyN₂HS₂)]⁺. Calc. for C₁₉H₂₁N₄RuO_{2.5}S₂ (536.60): C, 42.53; H, 3.25; N, 10.62; S, 12.15. Found C, 42.22; H, 3.40; N, 10.55; S, 12.61%.

4.2.7. $[Ru(N_2H_4)(pyN_2H_2S_2)]$ (7)

A mixture of anhydrous N₂H₄ (0.5 ml, exc. 1.5 mmol) and $[Ru(NO)(pyN_2H_2S_2)]BF_4$ (250 mg, 0.44 mmol) in CH₂Cl₂ (15 ml) was stirred at 20 °C for 24 h. The resultant red-brown solid was removed by filtration. Subsequent addition of Et₂O (40 ml) to the filtrate led to the precipitation of an orange solid, which was separated, washed with MeOH (10 ml) and Et₂O (20 ml) and dried in vacuo. Yield: 38 mg of $7 \cdot 1.8 CH_2 Cl_2 \cdot CH_3 CN$ (14%). ¹H NMR ([D₆]DMSO, 269.7 MHz): $\delta = 7.54$ (m, 3H, 2NH + H_{γ} , pyridine), 7.32-7.26 (m, 5H, Ar-H), 6.78-6.72 (m, 5H, Ar-H), 4.91-4.86 (dd, 2H, CHH), 4.53-4.47 (d, 2H, CHH), 3.23 (s, 2H, NH₂), 2.13 (d, 2H, NH₂). ¹³C{¹H} NMR $([D_6]DMSO, 100.4 \text{ MHz}): \delta = 157.44, 151.61, 150.47,$ 134.28, 130.69, 125.90, 125.27, 119.97, 119.55, (C[Aryl]), 69.1 (CH₂). IR (KBr): v(tilde) = 3232, 3141 (w, N–H). MS (FD⁺, CH₂Cl₂): m/z = 452 [Ru(pyN₂H₂S₂)]⁺, 484 $[Ru(N_2H_4)(pyN_2H_2S_2)]^+$, 904 $[{Ru(pyN_2H_2S_2)}_2]^+$. Calc. for C22.8H27.6Cl3.6N6RuS2 (679.97): C, 40.25; H, 4.09; N, 12.33. Found: C, 40.16; H, 4.16; N, 12.25%.

4.2.8. $[{Ru(pyN_2H_2S_2)}_2]$ (8)

A yellow suspension of $pyN_2H_2S_2$ -H₂ (284 mg, 0.8 mmol), LiOMe (1.6 ml, 1.6 mmol of 1 N solution in MeOH) and [Ru(Cl)₂(CH₃CN)₄] (270 mg, 0.8 mmol) in MeOH (30 ml) was heated at 65 °C for 3 h. The resulting fine red crystals were separated, washed with MeOH (20 ml) and Et₂O (30 ml) and dried in vacuo. Yield: 230 mg of **8** · MeOH (62%). IR (KBr): v(tilde) = 3252, 3242 (w, N–H). MS (FD⁺, DMSO): m/z = 904 [{Ru(pyN₂H₂S₂)}₂]⁺. Calc. for C₃₉H₃₈N₆Oru₂S₄ (937.17): C, 49.98; H, 4.09; N, 8.97; S, 13.69. Found: C, 49.81; H, 3.82; N, 8.94; S, 13.54%.

4.2.9. $[Ru(pyN_2H_2S_2)]_2BF_4$ ([9]BF₄)

A red mixture of **8** (134 mg, 0.15 mmol) and NOBF₄ (17 mg, 0.15 mmol) in CH₂Cl₂ (25 ml) was stirred at $-78 \,^{\circ}$ C for 2 h and at 20 $^{\circ}$ C for 48 h in the course of which a green solid was precipitated, which was separated, washed with CH₂Cl₂ (20 ml) and *n*-hexane (10 ml) and dried in vacuo. Yield: 130 mg of [{Ru(pyN₂H₂S₂)}₂]BF₄ · CH₂Cl₂ (80%). IR (KBr): *v*(tilde) = 3245, 3236 (w, N–H), 1069 (s, B–F). MS (FD⁺, DMSO): *m*/*z* = 904 [{Ru(pyN₂H₂S₂)}₂]⁺. Calc. for C₃₉H₃₆N₆BCl₂F₄Ru₂S₄ (1067.87): C, 43.50; H, 3.37; N, 7.80; S, 11.91. Found: C, 43.45; H, 3.46; N, 7.79; S, 11.93%.

4.2.10. $[\{Ru(pyN_2H_2S_2)\}_2](BF_4)_2([10](BF_4)_2)]$

(a) From 1. A mixture of 1 (100 mg, 0.19 mmol) and NOBF₄ (22 mg, 0.19 mmol) in CH_2Cl_2 (20 ml) was heated at 20 °C for 12 h. In the course of which a green

solid was precipitated, which was separated, washed with CH_2Cl_2 (20 ml) and *n*-hexane (10 ml) and dried in vacuo. Yield: 60 mg of $[{Ru(pyN_2H_2S_2)}_2]$ (BF₄)₂ (68%).

(b) From 8: A red suspension of 8 (156 mg, 0.17 mmol) and NOBF₄ (40 mg, 0.34 mmol) in CH₂Cl₂ (20 ml) was heated at 20 °C for 24 h. The resultant green solid was separated by filtration, washed with CH₂Cl₂ (20 ml) and n-hexane (10 ml), dried in vacuo and recrystallized from CH₂Cl₂/DMSO/*n*-hexane (10:1:10) to give a green solid. Yield: 110 mg of $[10](BF_4)_2$ (60%). ¹H NMR ([D₆]DMSO, 269.7 MHz): δ = 7.97 (t, $J_{\rm HH} = 7.9$ Hz, 2H, H_{γ} , pyridine), 7.68 (d, 2H, NH), 7.61 (d, $J_{\rm HH} = 7.7$ Hz, 2H, H_{β} , pyridine), 7.53 (d, $J_{\rm HH} = 7.7$ Hz, 2H, H_{β} , pyridine), 7.40–5.90 (m, 16H, C₆H₄), 4.92 (dd, 2H, CHH), 4.83 (dd, 2H, CHH), 4.70 (d, 2H, CHH), 4.03 (d, H, CHH), 3.83 (d, 2H, NH). ¹³C{¹H} NMR ([D₆]DMSO, 100.4 MHz): $\delta = 158.5$, 156.3, 146.8, 145.6, 141.1, 140.6, 139.8, 131.2, 130.1, 129.0, 127.5, 127.3, 126.2, 123.6, 123.0, 122.6, 122.0 (C[Aryl]), 70.61, 67.8 (CH_2) . IR (KBr): v(tilde) = 3234(w, N–H), 1074 (vs, B–F). MS (FD⁺, DMSO): m/z =904 $[\{Ru(pyN_2H_2S_2)\}_2]^+$. Calc. for $C_{38}H_{34}N_6B_2F_8Ru_2S_4$ (1078.74): C, 42.31; H, 3.18; N, 7.79. Found: C, 42.11; H, 3.26; N, 8.12%.

4.2.11. $[{Ru(pyN_2H_2S_2)}_2](Cl)_2([10](Cl)_2)$

A suspension of $pyN_2H_2S_2-H_2$ (355 mg, 1.0 mmol), LiOMe (2 ml, 2 mmol of 1 N solution in MeOH) and [Ru(Cl)₃(MeSPh)₃] (582 mg, 1.0 mmol) in MeOH/THF (each 30 ml) was heated at 65 °C for 4 h. The resulting fine green crystals were separated by filtration, washed with MeOH (20 ml) and ether (30 ml) and dried in vacuo. Yield: 130 mg of [10](Cl)₂ · MeOH (26%). IR (KBr): v(tilde) = 3232 (w, N–H). MS (FD⁺, DMSO): $m/z = 904 [\{Ru(pyN_2H_2S_2)\}_2]^+$. Calc. for C₃₉H₃₈N₆Cl₂-ORu₂S₄ (1008.08): C, 46.47; H, 3.80; N, 8.34; S, 12.72. Found: C, 46.39; H, 3.77; N, 8.13; S, 12.62%.

4.2.12. $[{Ru(pyN_2H_2S_2)}_2](I)_2([10](I)_2)$

A red suspension of **8** (100 mg, 0.11 mmol) and I₂ (28 mg, 0.11 mmol) in CH₂Cl₂ (20 ml) was stirred at 20 °C for 48 h in the course of which a green solid was precipitated, separated, washed with CH₂Cl₂ (10 ml) and *n*-hexane (10 ml) and dried in vacuo. Yield: 120 mg of [**10**](I)₂ · 0.5CH₂Cl₂ (91%). IR (KBr): v(tilde) = 3241 (w, N–H). MS (FD⁺, DMSO): m/z = 904 [{Ru(pyN₂H₂S₂)}₂]⁺. Calc. for C_{38.5}H₃₅N₆ClI₂Ru₂S₄ (120141): C, 38.49; H, 2.94; N, 6.70; S, 10.68. Found: C, 38.48; H, 3.13; N, 6.52; S, 10.48%.

4.3. X-ray structure analysis of $[{Ru(pyN_2H_2S_2)}_2]Cl \cdot 4MeOH ([9]Cl \cdot 4MeOH) and preliminary X-ray structure analysis of <math>[{Ru(pyN_2H_2S_2)}_2](BF_4)_2 \cdot 2DMSO \cdot acetone \cdot n-hexane ([10](BF_4)_2 \cdot 2DMSO \cdot acetone \cdot n-hexane)$

Black block-shaped single crystals of $[9]Cl \cdot 4MeOH$ were grown at room temperature by slow air diffusion of a solution of $[{Ru(pyN_2H_2S_2)}_2]$ (8) into a mixture

Table 2

 $Selected \ crystallographic \ data \ of \ [\{Ru(pyN_2H_2S_2)\}_2]Cl \cdot 4MeOH \ ([9]Cl \cdot 4MeOH) \ and \ [\{Ru(pyN_2H_2S_2)\}_2](BF_4)_2 \cdot 2DMSO \cdot acetone \cdot \textit{n-hexane} \ ([10](BF_4)_2 \cdot 2DMSO \cdot acetone \cdot \textit{n-hexane}) \ (Interpreted and Interpreted and Interp$

Compound	[9]Cl · 4MeOH	$[10](BF_4)_2 \cdot 2DMSO \cdot acetone \cdot n-hexane^a$
Formula	$C_{42}H_{50}ClN_6O_4Ru_2S_4$	$C_{51}H_{66}B_2F_8N_6O_3Ru_2S_4$
$M_{\rm r} ({\rm g \ mol}^{-1})$	1068.71	1379.22
Crystal size (mm)	$0.50 \times 0.40 \times 0.30$	$0.40 \times 0.38 \times 0.30$
$F(0\ 0\ 0)$	8720	2816
Crystal system	orthorhombic	monoclinic
Space group	Fdd_2	C_2/c
a (pm)	3036.2 (9)	2121.8 (4)
<i>b</i> (pm)	3574 (2)	1861.1 (4)
<i>c</i> (pm)	1659.3 (5)	1502.1 (3)
$V (\mathrm{nm}^{-3})$	18.11 (1)	5.909 (2)
Ζ	16	4
$\rho_{\rm calc} ({\rm g}{\rm cm}^{-3})$	1.577	1.550
$\mu (\mathrm{mm}^{-1})$	0.964	0.795
$T\left(\mathrm{K} ight)$	298	200
θ Range (°)	1.76-27.01	2.8-52.0
Measured reflection	5815	7106
Unique reflection	5434	5814
R _{int}	0.0205	
Observed reflection	3881	3696
σ Criterion	$F_0 > 4.0\sigma(F)$	$F_0 > 4.0\sigma(F)$
Reflection parameters	540	356
R_1/wR_2	0.0415/0.0880	0.0894/0.2136
Absolute structure parameter [19]	0.05 (4)	

^a Preliminary data.

of MeOH and CH₂Cl₂ (1:1) in the course of 48 h. Green single crystals of poor quality of $[10](BF_4)_2 \cdot$ 2DMSO · acetone · *n*-hexane were grown by layering a solution of $[10](BF_4)_2$ in DMSO/acetone (1/3) with *n*-hexane at -20 °C within one week.

Single crystals were sealed under N2 in a glass capillary; data were collected either on a Nicolet R3m/V ([9]Cl \cdot 4MeOH) or a Siemens P4 ([10](BF₄)₂ \cdot 2DMSO · acetone · n-hexane) diffractometer using Mo K α radiation (λ = 71.073 pm, graphite monochromator). For $[10](BF_4)_2 \cdot 2DMSO \cdot acetone \cdot n$ -hexane, an empirical absorption correction using XABS2 [17] has been performed, while for [9]Cl · 4MeOH absorption effects have been neglected. The structures were solved by direct methods and refined on F^2 using full-matrix least squares procedures (SHELXTL NT 5.10 [18]). Hydrogen atoms were geometrically positioned and allowed to ride on their carrier atoms with an isotropic displacement parameter fixed at 1.2 or 1.5 times Ueq of the proceeding C, N, or O atom. Table 2 lists selected crystallographic data. X-ray structure determination of $[10](BF_4)_2 \cdot 2DMSO \cdot acetone \cdot n$ -hexane suffered from high residual electron density maxima localized in vicinity of the two Ru centers and probably disordered solvent molecules.

5. Supplementary material

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as Supplementary Publication Nos. CCDC 238306 and 238307. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB 21 EZ, UK (fax: +44 1223 336 033; e-mail: deposit @ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

Acknowledgments

We thank Professor Dr. Horst Kisch for his helpful suggestions. Financial support for this work by the Deutsche Forschungsgemeinschaft (SFB 583 'Redox-Active metal complexes') and Fonds der Chemischen Industrie is gratefully acknowledged.

References

 (a) D.P. Mellor, in: F.P. Dwyer, D.P. Mellor (Eds.), Chelating Agents and Metal Chelates, Academic Press, New York, London, 1964, p. 44; (b) K. Burger, in: K. Burger (Ed.), Biocoordination Chemistry, Ellis Horwood, New York, 1990, p. 11.

- [2] (a) R.A. Henderson, G.J. Leigh, C.J. Picket, Adv. Inorg. Chem. Radiat. 27 (1983) 245;
 (b) H. Kandler, C. Gauss, W. Bidell, S. Rosenberger, T. Bürgi, I.L. Eremenko, D. Veghini, O. Orama, P. Burger, H. Berke, J. Am. Chem. Soc. 110 (1988) 4872;
 (c) J. Chatt, A.J. Pearman, R.L. Richards, J. Organomet. Chem. 101 (1975) 45.
- [3] D. Sellmann, J. Utz, N. Blum, F.W. Heinemann, Coord. Chem. Rev. (1999) 607.
- [4] D. Sellmann, J. Utz, F.W. Heinemann, Inorg. Chem. 38 (1999) 5314.
- [5] (a) T. Tanase, K. Imagawa, S. Dev, Y. Mizobe, S. Yano, M. Hidai, New J. Chem. 12 (1988) 697; (b) S. Dev, K. Imagawa, Y. Mizobe, G. Cheng, Y. Wakatsuki, H. Yamazaki, M. Hidai, Organometallics 8 (1989) 1232; (c) H. Matsuzaka, Y. Hirayame, M. Nishio, Y. Mizobe, M. Hidai, Organometallics 12 (1993) 36; (d) A. Takahashi, Y. Mizobe, H. Matsuzaka, S. Dev, M. Hidai, J. Organomet. Chem. 456 (1993) 243; (e) K. Shiu, M. Chiang, S. Peng, G. Lee, J. Wang, L. Liou, Organometallics 17 (1998) 1790; (f) H.K. Matsuzaka, Y. Mizobe, M. Nishio, M. Hidai, J. Chem. Soc., Chem. Commun. (1991) 1011; (g) M. Nishio, H. Matsuzaka, Y. Mizobe, M. Hidai, J. Chem. Soc., Chem. Commun. (1993) 375; (h) T. Kondo, S. Uenoyama, K. Fujita, T. Mitsudo, J.
- Am. Chem. Soc. 121 (1999) 482.
 [6] (a) C. Sudha, S.K. Mandal, A.R. Chakravarty, Inorg. Chem. 33 (1994) 4878;
- (b) E.P. Kelson, L.M. Henling, W.P. Schaefer, J.A. Labinger, J.E. Bercaw, Inorg. Chem. 32 (1993) 2863;
 (c) A.R. Chakravarty, F.A. Cotton, M.P. Diebold, D.B. Lewis, W.J. Roth, J. Am. Chem. Soc. 108 (1986) 971.
- [7] (a) F. Bottomley, Acc. Chem. Res. 11 (1978) 158;
 (b) J.A. McCleverty, Chem. Rev. 79 (1979) 53.
- [8] D. Sellmann, J. Utz, F.W. Heinemann, Inorg. Chem. 38 (1999) 459.
- [9] D. Sellmann, J. Utz, F.W. Heinemann, Eur. J. Inorg. Chem. (1999) 341.
- [10] B.R. Cameron, D.A. House, A. McAuley, J. Chem. Soc., Dalton Trans (1993) 1019.
- [11] B.R. Cameron, G.J. Bridger, K.P. Maresca, J. Zubieta, Inorg. Chem. 39 (2000) 3928.
- [12] T. Kondo, S. Uenoyama, K. Fujita, J. Am. Chem. Soc. 121 (1999) 482.
- [13] (a) H.M. Koepp, H. Wendt, H. Strehlow, Z. Elektrochem. 64 (1960) 483;

(b) G. Gritzner, J. Kuta, Pure Appl. Chem. 56 (1984) 461.

- [14] J.D. Gilbert, D. Rose, G. Wilkinson, J. Chem. Soc. (A) (1970) 2765.
- [15] N.S. Al-Zamil, E.H.M. Evans, R.D. Gillard, D.W. Gams, T.E. Jenkins, R.J. Lancashire, P.A. Williams, Polyhedron 1 (1982) 525.
- [16] J. Chatt, G.L. Leigh, A.P. Storace, J. Chem. Soc. (A) (1971) 1380.
- [17] S. Parkin, B. Moezzi, H. Hope, J. Appl. Crystallogr. 28 (1995) 53.
- [18] SHELXTL NT 5.10 Bruker AXS, Inc., Madison, WI, USA, 1998.
- [19] H.D. Flade, Acta Crystallogr. (1983) 876.