VIBRATIONAL SPECTRA AND FORCE CONSTANTS FOR THE MOLECULAR SERIES $NH_{3-n}Cl_n$

WOLFGANG SAWODNY* and HEINZ HÄRTNER

Abteilung für Anorganische Chemie der Universität Ulm, D-7900 Ulm (F.R.G.) ROLF MINKWITZ and DIRK BERNSTEIN Fachbereich Chemie, Anorganische Chemie, Universität Dortmund, D-4600 Dortmund (F.R.G.) (Received 20 February 1989)

ABSTRACT

The IR spectrum of NCl₃ has been remeasured in an N₂ matrix and reassigned. Force constants have been calculated by ab initio methods for the molecular series $NH_{3-n}Cl_n$. For the still unknown HNCl₂, the force field was used to calculate the expected vibrational frequencies which may prove helpful for finding spectroscopic evidence for this molecule.

INTRODUCTION

Some time ago, force constants of the molecular series $NH_{3-n}F_n$ were calculated by ab initio methods [1]. For H_2NF , unknown at that time, the expected vibrational frequencies were calculated from its ab initio force field. Recently, when this molecule was synthesized, this prediction was shown to be fairly correct and it was helpful for the identification of the compound and the assignment of its vibrational spectrum [2]. As the vibrational spectrum of H_2NCl is now completely known and could be used for a force field calculation [3], it seemed worthwhile to treat the series $NH_{3-n}Cl_n$, in which one member, $HNCl_2$, is still missing, in the same way. To obtain more reliable results, the vibrational spectrum of NCl_3 , hitherto only known in solution [4,5], in which a frequency shift due to intermolecular interaction cannot be excluded, was remeasured in an N_2 matrix – analogous to H_2NCl .

EXPERIMENTAL

 NCl_3 was obtained by feeding gaseous chlorine into 2 mol NH_4Cl in aqueous solution for 1 h. The evolved NCl_3 gas was dried in a $CaCl_2$ cylinder and frozen

^{*}Author for correspondence.

at a cold surface at -78 °C. After the reaction was stopped, the cooling device was slowly warmed up to room temperature, which caused the surplus chlorine to evaporate through the CaCl₂ cylinder. About 0.5 ml of almost Cl₂-free NCl₃ remained on the bottom of the cooling device. It was frozen at -196 °C. Caution! During these operations, violent explosions can occur, therefore, extreme precautions are mandatory.

To obtain the matrix spectrum, the vessel containing the NCl₃ was connected to a helium evaporation cryostat. By warming up the vessel slowly, the NCl₃ was transported in a stream of N₂ onto a sample holder, where it was frozen in the N₂ matrix at 10 K. ¹⁵NCl₃ was prepared in the same way from ¹⁵NH₄Cl (95%), obtained from Stohler Co.

Infrared spectra were recorded with a Perkin Elmer instrument 580 B; a maximum resolution of 0.8 cm^{-1} was achieved.

VIBRATIONAL SPECTRUM OF NCl₃

The matrix IR spectra of NCl₃ (Fig. 1) confirm essentially the earlier spectroscopic work of Jander, Engelhardt and co-workers carried out in organic solvents [4,5]. In the low frequency region only, an additional combination band is observed, which suggests a different assignment of a deformation mode. The combination band $\nu_3 - \nu_4$ at 385 and 371 cm⁻¹ respectively, found by Bayersdorfer et al. [5] was not observed in the matrix spectrum. Instead, there is a band at 365.2 and 364.8 cm⁻¹, which we assign to $\nu_2(\delta_s \text{NCl}_2)$. The band at 351.5 and 349.5 cm⁻¹, also found by Bayersdorfer et al. [5] and assumed to be ν_2 is of somewhat lower intensity and is therefore reassigned as the combination $\nu_2 + \nu_4 - \nu_1$, which is enhanced by Fermi resonance with ν_2 at ca. 365 cm⁻¹. The intensity ratio of these two bands is 100:81.5 (¹⁴NCl₃) and 100:79 (¹⁵NCl₃). From these ratios and the measured frequency values the frequency difference of unperturbed ν_2 and $\nu_2 + \nu_4 - \nu_1$ can be calculated [6] to be only 2 cm⁻¹ for ¹⁴NCl₃ and 1.8 cm⁻¹ for ¹⁵NCl₃. This close vicinity of the coupling vibrations is the reason for the strong enhancement of the combination band.

The combination $\nu_2 + \nu_4$ at 608 cm⁻¹ could only be seen as a shoulder of the strong ν_3 band for ¹⁴NCl₃ in solution [5]. For a thin layer of the matrix, both vibrations could be observed as clearly separated bands at 644 and 622 cm⁻¹ for ¹⁴NCl₃. Again, Fermi resonance must be assumed for $\nu_2 + \nu_4$ and ν_3 , but this time the intensity ratio is only 100:4.6, giving a 1 cm⁻¹ shift for the unperturbed vibrations to 643 and 623 cm⁻¹. For ¹⁵NCl₃ (632.3 and 618 cm⁻¹) the resolution is less and the intensity ratio cannot be determined exactly. It can only be estimated to be between 100:20 and 100:35. This gives a frequency correction of 3.0 ± 0.7 cm⁻¹ with 629.2 cm⁻¹ for ν_3 and 621 for $\nu_2 + \nu_4$ of ¹⁵NCl₃, in the unperturbed state. In Table 1, our assignment for NCl₃ is compared with the earlier one [5].

Fig. 1. Matrix IR spectra of: (a) $^{14}NCl_3$ and (b) $^{15}NCl_3$ in an N_2 matrix at 10 K.

Vibrational spectra of $^{14}\mathrm{NCl}_3$ and $^{15}\mathrm{NCl}_3$ (in cm $^{-1}$)

Infrared (solution [4,5])	Infrared (N ₂ mata (this wor	rix) rk)	Correcte Fermi re	d for sonance	Isotopic shift	Assignment
¹⁴ NCl ₃	¹⁵ NCl ₃	¹⁴ NCl ₃	¹⁵ NCl ₃	¹⁴ NCl ₃	¹⁵ NCl ₃		
643	627	644	632.3	643	629.2	13.8	$\nu_3(E)$ ($\nu_{\rm NCl}$ asym.)
608	n.b.	622	618	623	621	2.0	$\nu_{2} + \nu_{4} (E)$
520-540	510-530	554.4	541.7			12.7	$v_1(A_1)$ (v_{NCI} sym.)
385	371						$\nu_3 = \nu_4 (E)$
349	349	365.2	364.8	359	358	1.0	$\nu_2(A_1) \ (\delta_{\rm NCl_3} {\rm sym.})$
		351.5	349.5	357	356.2	0.8	$\nu_3 + \nu_4 - \nu_1 (A_1)$
258	258	263	262.8			0.2	$\nu_4(E)(\delta_{ m NCl_3} m asym.)$

CALCULATION OF FORCE CONSTANTS

As for H_2NCl [3], the force fields for $HNCl_2$ and NCl_3 were calculated ab initio according to Pulay's force method [7,8] with the TEXAS program [9]. A 4-21G basis set was used for nitrogen [10], a 4-3-21G basis set for chlorine, similar to the 3-3-21 basis set of Oberhammer and Boggs [11], but fitting better to the 4-21G basis sets for the second row elements [12]. An additional *d* function was used for nitrogen (with exponent 0.8) and chlorine (with exponent 0.6).

Table 2 contains the calculated geometrical data for the series $NH_{3-n}Cl_n$ which are compared with the experimental results. They are in good agreement; however, it should be noted that for the NCl distance the experimental data give a 1 pm shortening for NH_2Cl compared with NCl_3 , but the ab initio results give a 1 pm lengthening, with $NHCl_2$ fitting this trend.

Table 3 gives the ab initio force constants calculated for the series $NH_{3-n}Cl_n$. All constants show consistent and plausible trends within this series, with all comparable coupling constants being of identical sign and similar magnitude. For NCl₃ and H₂NCl [3], an iteration of the diagonal force constants to fit the experimental frequencies was performed as usual. For NH₃, the ab initio force field obtained by Pulay and Meyer [13] with the least sophisticated basis set (7-31) was adapted to the anharmonic frequencies of NH₃ [17], to give comparable values.

Calculating a GVFF for NCl₃ using the isotopic frequency data for ¹⁴NCl₃ and ¹⁵NCl₃ may be a good check for the validity of the ab initio calculation. The results are given in Table 4. It should be noted that a total adaption of both isotopic shifts was neither possible in species A_1 nor in species E. In species A_1 the force field was chosen to reproduce $\Delta \nu_1$ as closely as possible, as this is the more accurate quantity, $\Delta \nu_2$ being influenced by Fermi resonance, though an attempt was made to correct for it. A better fit for $\Delta \nu_2$ would shift

	NH ₃		$\rm NH_2Cl$		NHCl ₂	NCl ₃	
	Calc. [13]	Exp. [14]	Calc. [3]	Exp. [15]	Calc.	Calc.	Exp. [16]
r _{NH} (pm) r _{NCl} (pm)	100.1	101.2	101.2 176.0	101.9 174.8	101.2 175.2	174.9	175.4
	107.57	106.68	105.64 103.36	106.42 103.50	103.32 109.70	108.6	107.8

TABLE 2

Geometrical data for the series $NH_{3-n}Cl_n$

Force constants for the series $NH_{3-n}Cl_n$ (consistent with energy in aJ, bond lengths in A = 100 pm and angles in radians)

	NH3		H ₂ NCl [3]	HNCl ₂		NCl ₃		
	Ab initio [13]	Diago- nal itera- tion	Ab initio	Diago- nal itera- tion	Ab initio	Extrapola- tion	Ab initio	Diago- nal itera- tion	GVFF
Symmetrical spe	ecies								
$F(\nu_{\rm NH})$	7.587	6.504	7.393	6.155	7.395	6.157			
$F(\nu_{\rm NCl})$			4.165	3.593	4.361	3.870/3.384	4.461	3.959	3.462
$F(\delta_{\rm NH_2})$	0.592	0.453	0.804	0.603					
$F(\delta_{ m HNCl})$			1.016	0.753	1.101	0.816			
$F(\delta_{ m NCl_2})$					1.522	1.295/1.381	2.061	1.754	1.870
$F(\nu_{\rm NH}/\nu_{\rm NCl})$			-0.041		-0.074				
$F(\nu_{\rm NH}/\nu_{\rm NH_2})$	0.600		0.362						
$F(\nu_{\rm NH}/\delta_{\rm HNCl})$			0.108		0.074				
$F(v_{\rm NH}/\delta_{\rm NCl_2})$					0.086				
$F(\nu_{\rm NCl}/\delta_{\rm NH_2})$			0						
$F(v_{\rm NCl}/\delta_{\rm HNCl})$			0.769		0.630	0.630/0.502			
$F(\nu_{ m NCl}/\delta_{ m NCl_2})$					0.620	0.620/0.494	1.105		0.881
$F(\nu_{\rm NH_2}/\delta_{\rm HNCl})$			-0.018						
$F(\delta_{\rm NCl_2}/\delta_{\rm HNCl})$					0.079				
Asymmetrical sp	pecies								
$F(v_{\rm NH})$	7.762	6.428	7.439	6.195					
$F(\nu_{\rm NCl})$					3.551	2.167/2.417	3.431	2.094	2.335
$F(\delta_{\rm NH_2})$	0.787	0.640							
$F(\delta_{\rm HNCl})$			1.000	0.642	0.920	0.591			
$F(\delta_{\rm NCl_2})$							1.466	1.144	1.107
$F(\nu_{\rm NH}/\delta_{\rm NH_2})$	-0.205								
$F(\nu_{\rm NH}/\delta_{\rm HNCl})$			-0.032						
$F(\nu_{\rm NCl}/\delta_{\rm HNCl})$					0.486	0.486/0.681			
$F(\nu_{\rm NCl}/\delta_{\rm NCl_2})$							-0.440		-0.618

 F_{12} to even lower values, close to its minimum at 0.8, but increase $\Delta \nu_1$ to ~14 cm⁻¹. In comparison to the ab initio calculation, a reduction of F_{12} from 1.11 to 0.88 seems to be tolerable within the inaccuracy of the ab initio method due to the small basis set used and the neglect of configuration interaction. However, as F_{12} is close to the minimum value (0.79), its uncertainty also causes a relatively large uncertainty (~0.5) for F_{11} . In species E, $\Delta \nu_3$ and $\Delta \nu_4$ are absolutely incompatible. $\Delta \nu_4$ is best adapted at $F_{34} = -0.4$, but $\Delta \nu_3 = -1.1$ even at the largest margin (14.5 cm⁻¹) set by the Fermi resonance correction. Whereas the solution generated by $\Delta \nu_4$ is close to the ab initio result, that produced by $\Delta \nu_3$ is far removed. We calculated a third solution leveling out $\Delta \nu_3$ and $\Delta \nu_4$, which gives $F_{34} = -0.62$, which may be assumed as just tolerable in comparison to the ab initio result (-0.44). We also calculated the force field

	Ab initio	Ab initio			Method of	Experimental
		Diagonal iteration	GVFF(I)	GVFF(II)	stepwise coupling	Frequency shifts
$\overline{A_1:F_1}$	4.461	3.959	3.462		3.422	······································
F_{12}	1.105	1.105	0.881		0.872	
F_{22}	2.061	1.754	1.870		1.894	
<i>E</i> : <i>F</i> ₃₃	3.431	2.094	2.838	2.335	2.027	
F_{34}	-0.440	-0.440	-1.080	-0.618	-0.395	
F_{44}	1.466	1.144	1.186	1.107	1.164	
$\Delta \nu_1$	11.57	10.33	12.72			12.7
Δv_2	3.62	3.07	2.51			1.0
$\Delta \bar{\nu_3}$	23.02	17.51	15.02	16.84		13.8 (14.5)
$\Delta \nu_4$	0.52	0.45	1.47	0.72		0.2

Force field for NCl_3 (units as in Table 3)

by the method of stepwise coupling [18], which is known to give a good approximation to species containing only one stretching and one deformation mode [19]. The results confirm the solutions with $F_{12}=0.88$ (A_1) and $F_{34}=-0.40$ (E).

VIBRATIONAL SPECTRUM EXPECTED FOR HNCl₂

To calculate the normal vibrations for the as yet unknown HNCl₂, its force field was derived from the ab initio data by reducing the diagonal constants by the same amount as was found for the other molecules of the series $NH_{3-n}Cl_n$. The reduction factors for one constant, derived in different molecules (e.g. $F(\nu_{\rm NH})$ from NH₃ and H₂NCl or $F(\nu_{\rm NCl})$ from H₂NCl and NCl₃) are in good agreement. Another force field was obtained by using the GVFF results for NCl_3 (with $F_{34} = -0.62$ in the *E* species, as the other probable limit of force field besides the modified ab initio solution). In this case, the coupling constants between the NCl stretchings and the deformations were also corrected to the GVFF values for NCl₃. The frequency calculations show that these variations of the force constant matrix are only of minor influence on the normal vibrations of $HNCl_2$, which are stable within a 10 cm⁻¹ margin, with the only exception of $v_{\rm NCl}$ asym. (E), for which a difference up to 30 cm⁻¹ is obtained. This is an indication that the calculated spectrum given in Table 5 should be a good approximation to the real one and should be helpful for its identification. One unusual feature is the interchange of $\nu_{\rm NCl}$ sym. and asym. compared

Calculated normal vibrations (cm^{-1}) for HNCl₂

A'	3336 ($\nu_{\rm NH}$), 960–970 ($\delta_{\rm HNCl}$), 630–640 ($\nu_{\rm NCl}$ sym.), 290–300 ($\delta_{\rm NCl_2}$)
Α″	1185-1195 (δ_{HNCl}), 580-610 (ν_{NCl} asym.)

TABLE 6

Stretching force constants of the series $NH_{3-n}Cl_n$ (force constants in aJ Å⁻¹, distance in pm) compared with those of the series $NH_{3-n}F_n$ from refs. 1 and 2

	NH_3	H ₂ NCl [3]	$HNCl_2$	NCl ₃
 f _{NH}	6.45	6.18	6.16	
$r_{\rm NH} \exp$.	101.2	101.9		
r _{NH} calc.	100.1	101.2	101.2	
f _{NC1}		3.59	3.02/2.78	2.71/2.52
$r_{\rm NCl} \exp$.		176.0		174.9
$r_{\rm NCl}$ calc.		174.8	175.2	175.9
	NH ₃	H ₂ NF	HNF ₂	NF_3
f _{NH}	6.54	6.04	5.64	
$r_{\rm NH} \exp$.	101.2	102.0	102.6	
$r_{\rm NH}$ calc.		101.8		
f _{NF}		4.47	4.57	4.16
$r_{\rm NF} \exp$.		143.34	140.0	136
$r_{\rm NF}$ calc.		140.0		

with NCl_3 , which is due to the coupling of these vibrations with deformational modes for $HNCl_2$.

DISCUSSION OF STRETCHING FORCE CONSTANTS

Though the force field of NCl₃ is still not exactly known, and this correlates with similar uncertainties for HNCl₂, a discussion of the stretching force constants is possible, as most of the effect on the NCl stretching constants in symmetry space turns out to affect only the NCl/NCl coupling constant, if transferred to internal coordinates, with a less than 10% variation of $f_{\rm NCl}$ itself (Table 6). Thus, the trend of this constant within the molecular series remains the same, with only a slightly different amount of change.

By substituting H by Cl in NH₃, the NH stretching force constant is decreased by ca. 4%. This is in agreement with a ~1 pm increase of the bond length and conforms with the results obtained for the series NH_{3-n}F_n [1], for which a 15% decrease of the force constant and a 2 pm lengthening was found. Going from NX₃ to HNX₂, an increase of ca. 10% is observed for f_{NX} both in the fluorine and chlorine series, but proceeding from HNX_2 to H_2NX , the NF stretching constant remained almost constant [1,2], whereas $f_{\rm NCl}$ increases by about another 20%. An explanation for this different behaviour cannot be given as yet, but the overall effect of an increase of the NX constant by reducing the number of X atoms remains the same in both series. For the fluorine compounds, this is in contrast to the NF bond length, which increases in this direction too, which is rather unusual, as one is inclined to assume an increase of the stretching force constant, if the bond distance becomes shorter [20], though one should keep in mind the different meaning of these data correlated to the potential energy curve [21]. An explanation for the opposite trend in the $NH_{3-n}F_n$ series was given only recently [22] by the effect of negative hyperconjugation and by the fact that for a highly polar bond the bonding potential consists of a covalent and an electrostatic part, of which the covalent one gives a constant contribution to the stretching force constant, but the electrostatic one shifts it considerably in the direction of higher values by increasing attraction.

For the series $NH_{3-n}Cl_n$, the NCl bond distance remains almost constant. The experimental results suggest a very slight increase with decreasing number of Cl atoms, whereas the data calculated by the ab initio method show a similarly small decrease, which cannot account for the change of the NCl stretching force constants. Thus, similar arguments as for the $NH_{3-n}F_n$ series may also hold for the chlorine compounds, though the effect seems to be smaller here.

Note added in proof: Recently, H.G. Mack, D. Christen and H. Oberhammer, J. Mol. Struct., 190 (1988) 215, published a new ab initio calculation for the series $NH_{3-n}F_n$ with a much more sophisticated MP2/6-31G** basis set. Though this gives a better adaption to the experimental data, the trends of stretching force constant changes within the series remained the same as in our earlier publication [1] and therefore the conclusions drawn in the present discussion remain valid.

REFERENCES

- 1 G. Fogarasi, P. Pulay, K. Molt and W. Sawodny, Mol. Phys., 33 (1977) 1565.
- 2 R. Minkwitz and R. Naß, Z. Naturforsch., Teil B, 43 (1988) 1478.
- 3 R. Minkwitz, V. Wölfel, R. Naß, H. Härtner and W. Sawodny, Z. Anorg. Allg. Chem., in press.
- 4 L. Bayersdorfer, U. Engelhardt, K. Höhne and J. Jander, Z. Naturforsch., Teil B, 23 (1968) 1602.
- 5 L. Bayersdorfer, U. Engelhardt, J. Fischer, K. Höhne and J. Jander, Z. Anorg. Allg. Chem., 366 (1969) 169.

- 6 J. Overend, in M. Davies (Ed.), Infrared Spectra and Molecular Structures, Elsevier, New York, 1963, p. 352.
- 7 P. Pulay, Mol. Phys., 17 (1969) 197.
- 8 P. Pulay, in H.F. Schaefer III (Ed.), Modern Theoretical Chemistry, Vol. 4, Plenum Press, New York, 1977, p. 153.
- 9 P. Pulay, Theor. Chim. Acta, 50 (1979) 299.
- 10 P. Pulay, G. Fogarasi, F. Pang and J.E. Boggs, J. Am. Chem. Soc., 101 (1978) 2550.
- 11 H. Oberhammer and J.E. Boggs, J. Mol. Struct., 55 (1972) 283.
- 12 G. Fogarasi, unpublished results.
- 13 P. Pulay and W. Meyer, J. Chem. Phys., 57 (1972) 3337.
- 14 W.S. Benedict and E.K. Plyler, Can. J. Phys., 35 (1957) 1235.
- 15 G. Cazzoli, D.G. Lister, P.G. Favero, J. Mol. Spectrosc., 42 (1972) 286.
- 16 G. Cazzoli, P.G. Favero, A. DalBorgo, J. Mol. Spectrosc., 50 (1974) 82.
- 17 H. Siebert, Anwendungen der Schwingungsspektroskopie in der anorganischen Chemie, Springer, Berlin, 1966.
- 18 W. Sawodny, A. Fadini and K. Ballein, Spectrochim. Acta, 21 (1965) 995.
- 19 W. Sawodny, J. Mol. Spectrosc., 30 (1969) 56.
- 20 R.M. Badger, J. Chem. Phys., 3 (1935) 710.
- 21 W. Sawodny, Kém. Közl., 46 (1976) 263.
- 22 H. Oberhammer, 12th Int. Symp. on Fluorine Chemistry, Santa Cruz, CA, 1988, Abstr. No. 401, published by University of California, Santa Cruz, CA, 1988.