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Abstract—The macrocyclic tetraenes 11 and 19, possible precursors of lankacidin C 1, have been prepared using intramolecular
Stille reactions to close the macrocyclic rings. The Stille precursor 10 was prepared by stereoselective acylation of the azetidinone
3 using the thioester 7. After reduction and deprotection, cyclisation gave the macrocyclic product 11 in 55% yield. Alternatively,
the Boc-protected amino-ester 17 was prepared by ring-opening of the azetidinone, and cyclised to the macrocycle 19 in 48% yield.

© 2001 Elsevier Science Ltd. All rights reserved.

Syntheses of the aldehyde 2, azetidinone 3 and vinyl-
stannane 4, building blocks for a projected synthesis of
the antitumour antibiotic, lankacidin C 1'* are re-
ported in the accompanying communication.* We here
describe the use of these intermediates to prepare com-
plex macrocyclic tetraenes, possible precursors of
lankacidin C 1.
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The conjugated dienyl ester 5 was prepared from the
aldehyde 2 and the sulfone 4 using a Julia coupling and
the methyl ester converted into the thioester 7 via the
carboxylic acid 6. Following the reaction conditions
developed earlier,* acylation of the azetidinone 3 using
the thioester 7 and lithium diisopropylamide as base
was highly stereoselective, and gave mainly (>95:5) a
single stereoisomer of the product. This was identified
as the required isomer 8 by analogy with previous
work® and the literature? although the yield, ca. 30—
35%, was disappointing. Reduction of the ketone using
potassium triethylborohydride was stereoselective and
gave the alcohol 9.° Since preliminary studies on the
Stille reaction had shown that better results were ob-
tained using vinylstannanes analogous to 9 when the
silyloxy group allylic to the tributyltin substituent had
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been deprotected to give a free hydroxyl group,® the
silyl ether 9 was treated with tetrabutylammonium
fluoride to remove all three tert-butyldimethylsilyl
groups. Cyclisation of the hydroxyvinylstannane 10 was
then investigated. Initial studies were carried out using
bis(acetonitrile)palladium(IT) chloride as the catalyst’
and modest yields, typically 25-30%, of the cyclised
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product 11 were obtained. However, significantly better
yields, ca. 55%, of the required macrocyclic product 11
were obtained if the pre-reduced palladium(0) catalyst,
Pd,(dba);—AsPh;, was used (Scheme 1).

The structure of the macrocyclic product was confirmed
by extensive spectroscopic studies.® In particular, the
mass spectrum of the product had a molecular ion
corresponding to 11 and the position of the methyl
group on the vinyl iodide moved from ¢ 2.48 to 1.87 in
the 'H NMR spectrum of the product, which also
indicated the presence of two conjugated diene
fragments.

The azetidinyl macrocycle 11 contains the intact nu-
cleus of lankacidin C 1. However, the presence of the
three unprotected hydroxyl groups and the intact aze-
tidinone meant that several selective functional group
interconversions would be necessary to complete a syn-
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thesis of lankacidin C from 11. Moreover, conforma-
tional modelling of the macrocyclic ring, indicated that
it is difficult for the C(16)-hydroxyl group to reach the
carboxyl carbon of the azetidinone ring to effect a
one-step oO-lactone formation—azetidinone ring-open-
ing. It was therefore decided to develop the chemistry
of the vinylstannane 9 further to carry out some of
these transformations before the macrocyclisation.

Treatment of the vinylstannane 9 with potassium
fluoride in methanol-tetrahydrofuran removed the N-
silyl group leaving the O-silyl groups unchanged.?
However, conversion of the azetidinone 12 into its
tert-butyloxycarbonyl (Boc) derivative was complicated
by accompanying acylation of the C(18)-hydroxyl
group. The vinylstannane was therefore converted into

its acetate 13 before N-desilylation and conversion into
the N-Boc azetidinone 15. Ring-opening of the azetidi-
none was now carried out using potassium cyanide in
methanolic N,N-dimethylformamide® to give the Boc-
protected amino-ester 16. The C(13)-hydroxyl was now
deprotected seclectively by treatment with tetra-
butylammonium fluoride in tetrahydrofuran to give the
alcohol 17, since the presence of this silyl group was
known to be detrimental to the Stille cyclisation,® and
the regioselectivity of this mono-desilylation confirmed
by conversion of the alcohol 17 into its acetate 18.'°
Cyclisation of the hydroxyvinylstannane 17 was better
carried out using the pre-reduced palladium catalyst
Pd,(dba),;, and gave the 17-membered macrocycle 19
the structure of which was confirmed by spectroscopic
studies (Scheme 2).'!

Scheme 1. Reagents and conditions: 1. LDA, 2; ii. Ac,0, Et;N, DMAP; iii. Hg(Na), MeOH, EtOAc (67% of 5 from 2); iv. NaOH,
MeOH, THF, H,O; v. 2-mercaptopyridine, DCC, DMAP (82% of 7 from 5); vi. 3, LiNPr, (30-35%); vii. KBEt;H (80%); viii.
TBAF (90%); ix. Pd,(dba); (30 mol%), AsPh; (1.2 mol%), anhydrous DMF, THF (1:1), (55%).

9 12R'=R%=H
13 R' = SiMe,Bu', R? = Ac
14R'=H, R2=Ac

Scheme 2. Reagents and conditions: 1. Ac,0, Et;N, cat. DMAP (83%); ii. KF, MeOH (90%); iii. Boc,O, DMAP, MeCN (89%);
iv. MeOH, KCN, DMF (89%); v. TBAF, THF (70%); vi. Ac,0, Et;N, cat. DMAP (52%); vii. Pd,(dba); (30 mol%), AsPh, (1.2

mol%), anhydrous DMF, THF (1:1) (48%).



A. Chen et al. / Tetrahedron Letters 42 (2001) 1251-1254 1253

Mq ¥ )

ml rj\/”'" R
+ C

@ NH Me OPMB

20 21

" | Me._-OPMB
Me. H " :;L
Me ii
J;'/c< &) _— H (@)
A Me

“OPMB Me. —
o CO,Me |
22 23

Scheme 3. Reagents and conditions: i. DMAP, Et;N (50%); ii. MeOH, KCN, DMF, 48 h (88%).

The 17-membered macrocycle 19 contains all the func-
tionality present in the large-ring system of lankacidin
C 1. The conversions that remain to be carried out
include the deprotection of the C(16)-hydroxyl group
with formation of the d-lactone ring, and the introduc-
tion of the N-pyruvyl substituent. As a model study for
this latter transformation, the NH-azetidinone 20 was
acylated on nitrogen using the acid chloride 21 pre-
pared from p-methoxybenzyl protected lactic acid.!?
Ring-opening of the N-acylated azetidinone 22 so
obtained using potassium cyanide in methanol N,N-
dimethylformamide gave the N-acylated amino-ester 23
in good yield (Scheme 3).

Present work is concerned with developing the chem-
istry described in this letter in order to complete a total
synthesis of lankacidin C.
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tion, and conversion of the carboxylic acid into the acid
chloride using oxalyl chloride in DMF.



