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Abstract 
Stereoselective total synthesis of (−)-pyrenophorin was accomplished from commercially available starting material 2-bromo 
epoxide using regioselective ring opening and the intermolecular Mitsunobu cyclization as key steps.
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Introduction

Macrodiolides (macrocyclic dilactones) are well represented 
in nature as both homo- and heterodimers and offer a wide 
variety of skeletons, ring sizes, and functional groups (Kang 
and Lee 2005).

Different macrodiolide lactones (Alluraiah et al. 2014; 
Madala et al. 2016; Pratapareddy et al. 2017; Ashok et al. 
2018; Edukondalu et al. 2015; Ramakrishna et al. 2016; 
Ramanujan et al. 2017; Alluraiah et al. 2018; Pratapareddy 
et al. 2019) and macrocyclic monolactones (Alluraiah et al. 
2016; Pratapareddy et al. 2015; Murthy et al. 2014) were 
synthesized and reported till date. Natural products with 

macrodiolide frameworks are also known to exhibit a wide 
range of biological properties including antibiotic, antifun-
gal (Kis et al. 1969; Krohn et al. 2007; Nozoe et al. 1965), 
anthelmintic (Kind et  al. 1996; Ghisalberti et  al. 2002; 
Christner et al. 1998), phytotoxic (Kastanias and Chrysayi-
Tokousbalides 2000, 2005; Sugawara and Strobel 1986), 
and antileukemic activities. The macrolide dilactone, pyr-
enophorin, is a good antifungal and herbicidal agent and has 
been isolated from Pyrenophora avenae (Ishibashi 1961), 
Stemphylium radicinum (Grove 1964; Hase et al. 1981), and 
Drechslera avenae (Kastanias and Chrysayi-Tokousbalides 
2005). This  C2-symmetric dilactone is derived by head-to-
tail dimerization of two identical C8 units. The potent bio-
logical activities and interesting structural structural features 
made an attractive target for the total synthesis of (−)-pyr-
enophorin (1) (Fig. 1), appeared to be an attractive target 
for total synthesis. A number of synthetic methodologies 
are reported toward the synthesis of racemic pyrenophorin 
(Hase et al. 1981; Asaoka and Takei 1981; Fujisawa et al. 
1982; Wakamatsu et al. 1985) and optically active pyreno-
phorin (Steliou and Poupart 1983; Hatakeyama et al. 1987; 
Baldwin et al. 1992; Kobayashi et al. 1998; Furstner et al. 
2001).
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Seuring and Seebach reported this synthesis through 
Mitsunobu reaction followed by hydrolysis of thioketal 
diolides with mercuric oxide or boron trifluoride (Seur-
ing and Seebach 1978). The reported above methods are 
associated with hard reaction conditions, lower yields, and 
chiral pool resources. To overcome the problems associated 
with the above methods, herein, we reported another alter-
native synthetic route in an entirely different strategy. This 
methodology involves the synthesis of 1 from inexpensive 
starting material, i.e., 2-bromoethyloxirane and subsequent 
regioselective ring opening and the intermolecular Mitsu-
nobu cyclization.

Results and discussion

The retrosynthetic analysis of 1 is shown in Scheme 1. The 
macrolide 1 could be obtained from the hydroxy acid 2 via 
cyclodimerization under the Mitsunobu reaction conditions 
followed by a deprotection of 1,3-dithiane. Hydroxy acid 
could be achieved from olefin 3, while the olefin 3 could 
be prepared by the coupling of 2-vinyl-1,3-dithiane 5 with 
bromo epoxide 4.

The stereoselective total synthesis of (−)-pyrenophorin 
is shown in Scheme 2. From the retrosynthesis, the known 

2-bromoethyloxirane 4 (Larson et al. 2011) on alkylation 
with 2-vinyl-1,3-dithiane 5 in dry THF gave compound 6 
in 75% yield. Later, epoxide in 6 was opened regioselec-
tively with LAH in dry THF at 0 °C to room temperature 
for 4 h that leads to a regioselective opening of epoxide to 
provide 7 in 83% yield. Alcohol obtained in the above step 
was silylated using TBSCl in the presence of imidazole in 
 CH2Cl2 at room temperature for 4 h to afford compound 
3 in 82% yield. Olefin 3 was subjected to ozonolysis in 
 CH2Cl2 at − 78 °C for 15 min to give the corresponding 
aldehyde 3a, which on immediate treatment with (meth-
oxycarbonylmethylene)triphenylphosphorane in benzene 
at reflux for 2 h furnished exclusively trans-Wittig product 
8 in 86% yield. Next, hydrolysis of ester 8 using LiOH 
in THF/MeOH/water (3:1:1, 20 mL) at room temperature 
for 4 h afforded acid 9 in 79% yield. Further, desilylation 
in 9 with TBAF in dry THF at 0 °C to room temperature 
for 4 h afforded the hydroxy acid 2 in 86% yield. Having 
completed hydroxy acid 2, it was aimed to cyclodimeriza-
tion under the Mitsunobu conditions according to Ger-
lach’s procedure (Gerlach et al. 1977). Thus, a reasonably 
dilute solution of hydroxy acid 2 in toluene–THF (10:1) 
was treated with  Ph3P and DEAD at − 25 °C for 10 h. The 
cyclodimerization took place with complete inversion of 
chirality at C-7 to furnish 10 in 61% yield. Finally, depro-
tection of 1,3-dithiane group in compound 10 with  CaCO3 
and  I2, in THF/H2O for 20 min, afforded the pyrenophorin 
1 in 73% yield as a white solid. m.p. 171–173 °C (lit. 
(Nozoe et al. 1965) m.p. 175 °C); [α]D − 57.3 (c 0.65, 
acetone) [lit. (Seebach et al. 1977) [α]D − 54.5 (c 0.48, 
acetone)]. The 1H and 13C NMR data and optical rotation 
value of synthetic 1 were in good accordance with data 
reported in the literature (Zhang et al. 2008).

Fig. 1  Structure of (−)-pyreno-
phorin (1)

Scheme 1  Retrosynthetic analysis of (−)-pyrenophorin
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Experimental section

General

All the chemical reagents and solvents were supplied by 
Sigma-Aldrich and AVRA, India. The solvents were fur-
ther purified by using basic purification techniques. The 
progress of the chemical reactions was monitored by TLC 
plates supplied by Merck Company. 1H and 13C NMR 
spectra were recorded on Bruker spectrometer at 300 and 
150/75 MHz, respectively. Chemical shifts and coupling 
constants are reported in δ units and Hertz, respectively. 
Different multiplicities such as singlet, doublet, double 
doublet, triplet, quadruplet, and multiplet were indicated 
by s, d, dd, t, q, and m. Mass values are noted as ESIMS. 
A digital polarimeter was used to measure the optical rota-
tion values at 25 °C.

(R)‑2‑(2‑(2‑Vinyl‑1,3‑dithian‑2‑yl)ethyl)oxirane (6)

To a stirred solution of 2-vinyl dithiane (4.7 g, 32.22 mmol) 
in dry THF (30 mL) cooled at − 78 °C was added a 1.6 M 
solution of n-BuLi in hexane (21.8 mL, 34.86 mmol) drop-
wise. The reaction mixture was stirred at − 20 °C for 1.5 h. 
After cooling to − 78 °C, a solution of bromide 4 (4.0 g, 
26.84 mmol) in THF (10 mL) was added dropwise, and 
the mixture was kept at − 30 °C for 2 h. The reaction was 
quenched with water (30 mL), and the mixture was extracted 
with  Et2O (2 × 50 mL). The combined extracts were washed 
with brine (30 mL), dried  (Na2SO4), and concentrated. The 
residual oil was purified by column chromatography on sil-
ica gel chromatography (60–120 silica gel, 10% EtOAc in 
pet. ether) to give 6 (4.27 g, 75%) as a colorless oil. 1HNMR 
(200 MHz,  CDCl3): δ 5.84 (m, 1H), 5.01–4.93 (m, 2H), 
3.01–2.90 (m, 1H), 2.83–2.70 (m, 4H), 2.66 (dd, 1H, J = 2.7, 
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Scheme 2  Stereoselective total synthesis of (−)-pyrenophorin
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5.1 Hz), 2.44 (dd, 1H, J = 2.7, 4.9 Hz), 2.04–1.88 (m, 2H), 
1.73–1.61 (m, 4H); 13C NMR (75 MHz,  CDCl3) δ 137.2, 
121.3, 65.1, 55.9, 46.3, 37.3, 30.1, 27.3, 24.6; ESIMS: 239 
(M + Na)+.

(S)‑4‑(2‑Vinyl‑1,3‑dithian‑2‑yl)butan‑2‑ol (7)

To a stirred suspension of LAH (0.68 g, 28.47 mmol) in 
dry THF (5 mL), a solution of 6 (4.1 g, 18.98 mmol) in dry 
THF (10 mL) was added dropwise at 0 °C under a nitrogen 
atmosphere and the mixture was stirred for 4 h at room tem-
perature. The reaction mixture was cooled to 0 °C, treated 
with saturated aq.  Na2SO4 solution, and filtered, and the fil-
trate was dried  (Na2SO4) and concentrated. The residue was 
purified by column chromatography (60–120 silica gel, 18% 
EtOAc in pet. ether) to give 7 (3.42 g, 83%) as a colorless 
syrup. [α]D + 28.1 (c 0.49,  CHCl3); 1HNMR (200 MHz, 
 CDCl3): δ 5.79 (m, 1H), 4.99–4.87 (m, 2H), 3.72–3.60 
(m, 1H), 2.91–2.80 (m, 4H), 2.26 (brs, 1H), 1.94–1.77 (m, 
2H), 1.73–1.57 (m, 4H), 1.11 (d, 3H, J = 6.0 Hz); 13C NMR 
(75 MHz,  CDCl3) δ 136.9, 120.8, 71.3, 55.8, 36.9, 34.3, 
27.2, 24.2, 23.3; ESIMS: 219 (M + H)+.

(S)‑tert‑Butyldimethyl(4‑(2‑vinyl‑1,3‑dithian‑2‑yl)
butan‑2‑yloxy)silane (3)

A mixture of the above alcohol 7 (3.2 g, 14.67 mmol) and 
imidazole (2.99 g, 44.03 mmol) in dry  CH2Cl2 (50 mL) was 
treated with TBSCl (2.40 g, 16.06 mmol) at 0 °C under a 
nitrogen atmosphere and stirred at room temperature for 4 h. 
The reaction mixture was quenched with aq.  NH4Cl solution 
(30 mL) and extracted with  CH2Cl2 (2 × 50 mL). The com-
bined extracts were washed with water (30 mL) and brine 
(30 mL), dried  (Na2SO4), and concentrated. The residue was 
purified by column chromatography (60–120 silica gel, 5% 
EtOAc in pet. ether) to furnish 3 (3.99 g, 82%) as a colorless 
liquid. [α]D + 82.6 (c 0.55,  CHCl3); 1H NMR (300 MHz, 
 CDCl3): δ 5.87 (m, 1H), 5.11–4.92 (m, 2H), 3.77–3.62 (m, 
1H), 2.87–2.73 (m, 4H), 1.95–1.80 (m, 3H), 1.72–1.61 (m, 
3H), 1.12 (d, 3H, J = 6.2 Hz), 0.87 (s, 9H), 0.19 (s, 3H), 0.06 
(s, 3H);13C NMR (75 MHz,  CDCl3): δ 136.4, 120.7, 72.1, 
55.8, 38.3, 35.9, 27.3, 26.0, 24.1, 23.8, 18.3, − 4.2, − 4.7; 
ESIMS: 355 (M + Na)+, 333 (M + H)+.

(S, E)‑Methyl 3‑(2‑(3‑(tert‑butyldimethylsilyloxy)
butyl)‑1,3‑dithian‑2‑yl)acrylate (8)

Ozone was bubbled through a cooled (− 78 °C) solution of 
3 (3.6 g, 10.84 mmol) in  CH2Cl2 (40 mL) until the pale 
blue color persisted. Excess ozone was removed with  Me2S 
(4 mL) and stirred for 15 min at 0 °C. The reaction mixture 
was concentrated under reduced pressure to give aldehyde 
3a, which was used for further reaction.

Solution of the above aldehyde 3a in benzene (50 mL) 
was treated with (methoxycarbonylmethylene)triphenylphos-
phorane (4.52 g, 13.03 mmol) at reflux temperature. After 
2 h, solvent was evaporated and the residue was purified by 
column chromatography (60–120 silica gel, 10% EtOAc in 
pet. ether) to furnish 8 (3.62 g, 86%) as a yellow liquid.[α]D 
− 48.6 (c 1.0,  CHCl3); 1HNMR (200 MHz,  CDCl3): δ 6.96 
(d, 1H, J = 15.2 Hz), 6.19 (d, 1H, J = 15.2 Hz), 3.86–3.74 
(m, 1H), 3.73 (s, 3H), 2.97–2.72 (m, 4H), 2.12–1.57 (m, 
6H), 1.12 (d, 3H, J = 6.3 Hz), 0.89 (s, 9H), 0.26 (s, 3H), 
0.12 (s, 3H); 13C NMR (75 MHz,  CDCl3) δ 166.9, 150.3, 
122.8, 69.3, 53.9, 40.1, 37.3, 33.4, 27.2, 25.9, 24.8, 23.8, 
18.2, − 4.3, − 4.6; ESIMS: 413 (M + Na)+.

(S, E)‑3‑(2‑(3‑(tert‑Butyldimethylsilyloxy)
butyl)‑1,3‑dithian‑2‑yl)acrylic acid (9)

To a solution of 8 (1.5 g, 3.84 mmol) in THF/MeOH/water 
(3:1:1, 20 mL), LiOH (0.27 g, 11.53 mmol) was added 
and stirred at room temperature for 4 h. The pH of reac-
tion mixture was adjusted to acidic with 1 N HCl solution 
and extracted with ethyl acetate (30 mL). Organic layers 
were washed with water (15 mL) and brine (15 mL), dried 
 (Na2SO4), and evaporated under reduced pressure, and the 
residue was purified by column chromatography (60–120 
silica gel, 30% EtOAc in pet. ether) to give 9 (1.14 g, 79%) 
as a colorless oil. [α]D + 14.6 (c 0.6,  CHCl3); 1H NMR 
 (CDCl3, 300  MHz): δ 7.03 (d, 1H, J = 15.6  Hz), 6.22 
(d, 1H, J = 15.6 Hz), 3.80–3.72 (m, 1H), 2.92–2.80 (m, 
4H), 2.06–1.88 (m, 3H), 1.81–1.64 (m, 3H), 1.11 (d, 3H, 
J = 6.0 Hz), 0.88 (s, 9H), 0.22 (s, 3H), 0.11 (s, 3H); 13C 
NMR (75 MHz,  CDCl3) δ 171.3, 152.6, 122.7, 68.7, 53.0, 
37.3, 33.7, 27.1, 25.9, 23.8, 18.2, − 4.4, − 4.6; ESIMS: 399 
(M + Na)+.

(S, E)‑3‑(2‑(3‑Hydroxybutyl)‑1,3‑dithian‑2‑yl)acrylic 
acid (2)

To a cooled (0 °C) solution of 9 (1.0 g, 2.65 mmol) in dry 
THF (10 mL) under nitrogen atmosphere, TBAF (3.9 mL, 
3.98 mmol) was added and stirred for 3 h. After completion 
of reaction, reaction mixture was diluted with water (5 mL) 
and extracted with ethyl acetate (2 × 50 mL). Organic lay-
ers were washed with water (2 × 10 mL) and brine (10 mL), 
dried  (Na2SO4), and evaporated, and the residue was purified 
by column chromatography (60–120 silica gel, 55% EtOAc 
in pet. ether) to give 2 (0.59 g, 86%) as a liquid. [α]D − 62.6 
(c 1.0,  CHCl3); 1H NMR  (CDCl3, 300 MHz): δ 7.01 (d, 
1H, J = 15.8 Hz), 6.19 (d, 1H, J = 15.8 Hz), 3.91–3.79 (m, 
1H), 2.91–2.76 (m, 4H), 1.99–1.83 (m, 2H), 1.71–1.53 (m, 
4H), 1.21 (d, 3H, J = 6.1 Hz); 13C NMR  (CDCl3, 75 MHz): 
δ171.0, 152.1, 123.1, 68.3, 53.2, 37.3, 33.4, 27.2, 25.3, 23.4; 
ESIMS: 285 (M + Na)+.
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Macrodilactone (10)

A solution of 2 (0.5  g, 1.90  mmol) and  Ph3P (2.49  g, 
9.54 mmol) in toluene/THF (10:1, 750 mL) DEAD (3.6 mL, 
34.21 mmol) was added at − 25 °C and stirred under  N2 
atmosphere for 10 h. Solvent was evaporated under reduced 
pressure, and the residue was purified by column chromatog-
raphy (60–120 silica gel, 10% EtOAc in pet. ether) to afford 
10 (0.28 g, 61%) as a colorless oil. [α]D-15.7 (c1.03,  CHCl3); 
1H NMR  (CDCl3, 300 MHz): δ 6.81 (d, 2H, J = 15.1 Hz), 
6.20 (d, 2H, J = 15.1 Hz), 5.20–5.09 (m, 2H), 3.03–2.82 (m, 
8H), 2.02–1.61 (m, 12H), 1.21 (d, 6H, J = 6.1 Hz); 13C NMR 
(75 MHz,  CDCl3) δ 165.1, 149.2, 124.7, 69.0, 53.2, 34.7, 
28.1, 26.9, 25.2, 18.1; ESIMS: 489 (M + H)+.

Pyrenophorin (1)

To a solution of compound 10 (0.2 g, 0.40 mmol) and 
 CaCO3 (0.40 g, 4.09 mmol) in THF/H2O (v/v, 4:1, 10 mL) 
was added  I2 (0.30 mg, 1.22 mmol) at 0 °C. The result-
ing mixture was stirred at 0 °C for 20 min. The reaction 
was quenched by adding saturated aqueous  Na2S2O3, fil-
tered through a pad of Celite, then extracted with EtOAc 
(3 × 20  mL), water, and brine, dried over  Na2SO4, and 
concentrated in vacuo. Purification by flash chromatog-
raphy on silica gel (60–120 silica gel, 15% EtOAc in pet. 
ether) gave compound 1 (92 mg, 73% yield: [α]D − 57.3 (c 
0.65, acetone); 1H NMR (400 MHz,  CDCl3): δ 6.94 (d, 2H, 
J = 16.1 Hz), 6.48 (d, 2H, J = 16.1 Hz), 5.03 (m, 2 H), 2.67 
(ddd, 2H, J = 14.1, 8.7, 3.8 Hz), 2.54 (ddd, 2H, J = 14.1, 
8.2, 3.8 Hz), 2.14 (m, 2 H), 2.08 (m, 2 H), 1.27 (d, 6H, 
J = 6.4 Hz); 13C NMR (75 MHz,  CDCl3): δ 199.4, 164.7, 
139.7, 131.3, 72.1, 37.4, 32.1, 19.7; ESIMS: 309 (M + H)+.

Conclusion

The stereoselective synthesis of pyrenophorin 1 was 
achieved from known 2-bromoethyloxirane using regi-
oselective ring opening and the intermolecular Mitsunobu 
cyclization as key steps by overcoming the less yield and 
hard reaction conditions of earlier reported methods.
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