SYNTHESIS AND COMPLEXING PROPERTIES OF NOVEL FERROCENE CROWN ETHERS

Bronislaw CZECH, Anna CZECH, Sang Ihn KANG, and Richard A. BARTSCH\* Department of Chemistry, Texas Tech University, Lubbock, Texas 79409, U.S.A.

Two novel ferrocene crown compounds in which the ferrocene nucleus bears one and two 18-crown-6 units are synthesized and their alkali metal cation complexation is examined in solvent extraction. The ferrocene biscrown exhibits selectivity for  $K^+$  and  $Rb^+$  in competitive extraction.

Crown compounds with a ferrocene unit incorporated into the macrocyclic ring have recently received considerable attention. Polyoxaferrocenophanes  $\underline{1} (X = Y = 0)^{1,2}$  and  $\underline{2} (X = Y = 0)^{3}$  polythiaferrocenophanes  $\underline{1} (X = Y = S)^{4}$  polyoxathiaferrocenophanes  $\underline{1} (X = 0, Y = S)^{5} \underline{2} (X = S, Y = 0)^{6-8}$  and  $\underline{3} (X = S, Y = 0)^{9}$  as well as the ferrocene cryptand  $\underline{4}^{6,10,11}$  have been synthe-



sized. Most of these multidentate ligands exhibit rather weak binding of alkali metal cations, but better complexation of silver and thallium ions.  $^{1-6,9-11}$ 

In this communication we wish to report the preparation of a new type of ferrocene functionalized crown 5 and the corresponding biscrown 6 and their complexing behavior towards alkali metal cations.



Reaction of hydroxymethylferrocene,  $\underline{7}$ , with commercially-available 3-mercapto-1,2-propanediol and trifluoroacetic acid gave, after column chromatography (alumina, EtOAc-EtOH, 5:1), (S-ferrocenylmethyl)glycerol  $\underline{8}^{12}$  in 82% yield as brown-yellow crystals with mp 44-46 °C. Cyclization of  $\underline{8}$  with the ditosylate of pentaethylene glycol and potassium <u>t</u>-butoxide afforded the ferrocene crown  $\underline{5}^{13}$  in 20% yield as a light brown, viscous oil after column chromatography (neutral alumina, EtOAc).



The first step of the synthetic route to the ferrocene biscrown <u>6</u> involved refluxing the tosylate of hydroxymethyl-18-crown-6,  $\underline{9}$ ,<sup>14</sup>) with potassium thiobenzoate in acetone to produce the crown thiobenzoate  $\underline{10}^{15}$  as a colorless oil in 91% yield. Reduction of <u>10</u> with lithium aluminum hydride afforded crude mercaptomethyl-18-crown-6, <u>11</u>, which was placed under vacuum (0.01 Torr, 70 °C, 10 h) to remove contaminating benzyl alcohol and then used in the next step without further purification. Reaction of 1,1'-di(hydroxymethyl)ferrocene, <u>12</u>, with trifluoro-acetic acid and two moles of <u>11</u> gave, after chromatography (alumina, EtOAc), the ferrocene biscrown <u>6</u><sup>16</sup> in 88% yield as a brown, viscous oil.

Chemistry Letters, 1 9 8 4



The structures of both new ferrocene crown compounds were verified by elemental analysis<sup>13,16)</sup> and by their <sup>1</sup>H NMR and IR spectra. The <sup>1</sup>H NMR spectrum of <u>5</u> consists of a multiplet overlapping a singlet at  $\delta$  3.4-3.8 for all protons (27H) except the ferrocene protons and a singlet at  $\delta$  4.11 for the nine ferrocene ring protons. The IR spectrum of <u>5</u> shows CH<sub>2</sub>S vibrations at 1467 and 1454 cm<sup>-1</sup> and an ether linkage absorption at 1122 cm<sup>-1</sup>. The <sup>1</sup>H NMR spectrum of <u>6</u> exhibits a multiplet at  $\delta$  2.46-2.70 for the four methylene protons located between sulfur and the crown ring, a multiplet overlapping a singlet ( $\delta$  3.46-3.83, 50H) for all other protons except those of the ferrocene rings, and a multiplet centered at  $\delta$  4.40 for the ferrocene protons. In the IR spectrum of 6, the ether linkage absorption at 1116 cm<sup>-1</sup> is the most characteristic band.

Since biscrown compounds may exhibit more selective alkali metal cation complexation than their monocyclic analogs,<sup>17)</sup> it was of interest to compare the cation complexing properties of the new ferrocene crown compounds <u>5</u> and <u>6</u>. After 0.25 M aqueous solutions KSCN were shaken with equal volumes of 0.050 M chloroform solutions of the ferrocene crown compounds, the chloroform phases were separated and shaken with 5% HC1. Cation concentrations in the resulting acidic aqueous phases were determined by ion chromatography. The metals loading of the organic phases were 44% and 128% for <u>5</u> and <u>6</u>, respectively. The high metals loading for <u>6</u> reveals that some molecules of <u>6</u> complex with two potassium cations. This suggests that <u>6</u> adopts conformations in which the two crown ether units act independently rather than in concert to form sandwich complexes. In agreement, when an aqueous solution which was 0.25 M in each LiSCN, NaSCN, KSCN, RbSCN and CsSCN was extracted with an equal volume of 0.050 M <u>6</u> in chloroform followed by stripping and analysis, a 140% metals loading was found with a cation selectivity of K<sup>+</sup> (72%) Rb<sup>+</sup> (27%) >> Na<sup>+</sup> (1%) and Li<sup>+</sup> and Cs<sup>+</sup> being undetectable. This selectivity order if inconsistent with an anticipated favoring of Cs<sup>+</sup> complexation if <u>6</u> were to form a sandwich complex.

39

This research was supported by grant D-775 from the Robert A. Welch Foundation.

References

- 1) J. F. Biernat and T. Wilczewski, Tetrahedron, 36, 2521 (1980).
- 2) S. Akabori, Y. Habata, Y. Sakamoto, M. Sato, and S. Ebine, Bull Chem. Soc. Jpn., <u>56</u>, 537 (1983).
- 3) S. Akabori, H. Fukuda, Y. Habata, M. Sato, and S. Ebine, Chem. Lett., <u>1982</u>, 1393.
- 4) M. Sato, H. Watanabe, S. Ebine, and S. Akabori, Chem. Lett., 1982, 1753.
- 5) S. Akabori, Y. Habata, M. Sato, and S. Ebine, Bull. Chem. Soc. Jpn, 56, 1459 (1983).
- 6) G. Oepen and F. Vögtle, Liebigs Ann. Chem., <u>1979</u>, 1094.
- 7) B. Czech and A. Ratajczak, Polish J. Chem., <u>54</u>, 767 (1980).
- 8) B. Czech, A. Ratajczak, and K. Nagraba, Monatsh. Chem., <u>113</u>, 965 (1982).
- 9) M. Sato, M. Kubo, S. Ebine, and S. Akabori, Tetrahedron Lett., 1982, 185
- 10) A. P. Bell and C. D. Hall, J. Chem. Soc., Chem. Commun., <u>1980</u>, 163.
- 11) P. J. Hammond, A. P. Bell, and C. D. Hall, J. Chem. Soc., Perkin Trans. 1, 1983, 707.
- 12) Data for <u>8</u>. IR (CHCl<sub>3</sub>, cm<sup>-1</sup>): 3430 (OH). <sup>1</sup>H NMR (CDCl<sub>3</sub>, δ): 2.2-3.0 (4H, m, CH<sub>2</sub>S + OH),
  3.35-3.85 (5H, m+s, Cp<u>CH<sub>2</sub>S</u> + CH<sub>2</sub>O + CHO), 4.14 (9H, s, Cp). Found: C, 54.85%; H, 5.99%.
  Calcd for C<sub>14</sub>H<sub>18</sub>FeO<sub>2</sub>S: C, 54.92%; H, 5.92%.
- 13) Found: C, 56.41%; H, 7.35%. Calcd for <u>5</u> (C<sub>24</sub>H<sub>36</sub>FeO<sub>6</sub>S): C, 56.69%; H, 7.14%.
- 14) B. Czech, B. Son, and R. A. Bartsch, Tetrahedron Lett., 1983, 2923.
- 15) Data for <u>10</u>. IR (neat, cm<sup>-1</sup>): 1662 (C = 0), 1116 (C 0). <sup>1</sup>H NMR (CDCl<sub>3</sub>, δ): 3.27 (2H, d, CH<sub>2</sub>S), 3.5-4.1 (23H, m, CH<sub>2</sub>O), 7.25-8.20 (5H, m, Ph). Found: C, 57.96%; H, 7.14%. Calcd for C<sub>20</sub>H<sub>30</sub>O<sub>7</sub>S: C, 57.95%; H, 7.29%.
- 16) Found: C, 54.76%; H, 7.40%. Calcd for <u>6</u> (C<sub>38</sub>H<sub>62</sub>FeO<sub>12</sub>S<sub>2</sub>): C, 54.93%; H, 7.52%.
- 17) K. Kimura, H. Tamura, and T. Shono, J. Chem. Soc., Chem. Commun., 1983, 492.

(Received September 22, 1983)