Epoxides are known to be cleaved by attack of nucleophiles at the less hindered site to give open-chain hydroxy compounds. Ring opening generally occurs at the less substituted site or at the site having no electron-withdrawing groups. In the case of 1,2-epoxyalkylphosphonates, orientation of the ring opening by a nucleophile is similar: cleavage occurs at C-2 of the oxirane ring. Using alkyllithium as a nucleophile, 1,2-epoxyalkylphosphonates decompose to allylic alcohols. In this communication, we describe the reaction of 1,2-epoxyalkyldiphenylphosphine oxides with lithium aluminum hydride to give 2-hydroxyalkyldiphenylphosphine oxides.

1.2-Epoxyalkyldiphenylphosphine oxides $3\mathbf{a} - \mathbf{c}$ are prepared by the reaction of 2-oxoalkyl p-toluenesulfonates with diphenylphosphine oxide in good yield, and compounds $3\mathbf{d} - \mathbf{g}$ are prepared by the following method: 1-Hydroxyalkyldiphenylphosphine oxides $1\mathbf{d} - \mathbf{g}^6$ are converted to 1-alkenyldiphenylphosphine oxides $2\mathbf{d} - \mathbf{g}$ by successive treatment with phosphorus(V) chloride and aqueous potassium hydroxide.

Abnormal Ring Opening of 1,2-Epoxyalkyldiphenylphosphine Oxides with Lithium Aluminum Hydride to Form 2-Hydroxyalkyldiphenylphosphine Oxides

Hiroyuki Imoto, Mitsuji Yamashita*

Department of Applied Chemistry, Faculty of Engineering. Shizuoka University, Hamamatsu 432, Japan

Ring opening of 1,2-epoxyalkyldiphenylphosphine oxides with LiAlH₄ gives 2-hydroxyalkyldiphenylphosphine oxides in good yield. This is the first example of ring opening of 1,2-epoxyalkyldiphenylphosphine oxides to give the corresponding 2-hydroxy derivatives.

 \mathbb{R}^1 1-4 \mathbb{R}^2 CH_3 а Η b C_2H_5 Η c C_6H_5 Η d CH, e C_2H_5 f $-(CH_2)_4$ -(CH₂)₅

Epoxidation of 2d-g with trifluoroperacetic acid gives phosphine oxides 3d-g with retention of configuration.⁷

The ring cleavage of 3a-g with lithium aluminum hydride gives compounds 4a-g in good yield.

Table 1. Compounds 2d-g Prepared

Product	Yield (%)	mp (°C)	Molecular Formula ^a or Lit. mp (°C)	MS (M ⁺) m/z	IR (KBr) v(cm ⁻¹)	$^{1}\text{H-NMR} \text{ (CDCl}_{3}/\text{TMS)}$ $\delta, J(\text{Hz})$
2d	28	103–105	C ₁₇ H ₁₉ OP (270.3)	270	1630 (C=C); 1200 (P=O)	0.89 (t, 3H, J_{HH} = 8, CH ₂ CH ₃); 1.84 (dd, 3H, J_{HH} = 7, J_{HP} = 3, CHCH ₃); 2.36 (dq, 2H, J_{HH} = 8, J_{HP} = 15, CH ₂); 6.18 (dq, 1H, J_{HH} = 7, J_{HP} = 22, CH); 7.2-7.9
2e	25	86-88	87-89 ⁸	298	1630 (C=C); 1200 (P=O)	(m, $10 H_{arom}$) $0.77 (t, 3 H, J_{HH} = 7, CH_2CH_2CH_3); 0.89 (t, 3 H, J_{HH} = 7, CH_2CH_3); 1.9-2.4 (m, 6 H, 3 CH_2); 6.05 (dt, 1 H, 3 CH_2); 6.05 (dt, 2 H, 3 CH_2); 6.05 (dt, 3 H, 3 CH_2); 6.05 (dt, 3 $
2 f	64	113-115	118-120 ⁹	282	1630 (C=C);	$J_{\text{HH}} = 7$, $J_{\text{HP}} = 21$, CH); 7.2–7.8 (m, 10 H _{arom}) 1.5–2.4 (m, 8 H, C ₆ H ₈); 6.37 (d, 1 H, $J_{\text{HP}} = 20$, CH):
2g	28	74–76	oil ⁹	296	1190 (P=O) 1630 (C=C); 1190 (P=O)	7.2–7.9 (m, $10 \mathrm{H_{arom}}$) 1.3–2.1 (m, $10 \mathrm{H}$, $\mathrm{C_{7}}$, $\mathrm{H_{10}}$); 6.55 (dt, $1 \mathrm{H}$, $J_{\mathrm{HH}} = 6$, $J_{\mathrm{HP}} = 17$, CH); 7.3–7.8 (m, $10 \mathrm{H_{arom}}$)

^a Satisfactory microanalyses obtained: $C \pm 0.30$, $H \pm 0.18$, P + 0.15.

3a-g
$$\frac{\text{LiAlH}_{4}/\text{THF}}{0 \circ \text{C}, 3 \text{ h}}$$
 $(\text{C}_{6}\text{H}_{5})_{2}\text{P}$ $(\text{C}_{6}\text{H}_{5})_{2}\text{P}$ $(\text{R}_{1})_{2}\text{P}$

Orientation of this cleavage is abnormal: i.e., attack of hydride ion occurs at C-1, but not at C-2 of the epoxide to afford 2-hydroxyalkylphosphine oxides. This is the first example where 1,2-epoxyalkylphosphorus compounds are cleaved at the (C-1)-O bond to give 2-hydroxyalkyl compounds.

(1-Ethyl-1-propenyl)diphenylphosphine Oxide (2d; $R^1=C_2H_5$, $R^2=CH_3$); Typical Procedure:

To a stirred solution of (1-ethyl-1-hydroxypropyl)diphenylphosphine oxide (1d; 2.12 g, 7.4 mmol) in CHCl₃ (15 mL) is added phosphorus(V) chloride (3.7 g, 18 mmol) at O°C. Stirring is continued for 4 h at room

temperature and the solution then neutralized with saturated aqueous NaHCO $_3$. To the solution is added KOH (1.0 g), the mixture is stirred for 18 h at room temperature, and extracted with CHCl $_3$ (4 × 25 mL). The extract is washed with 2 N HCl (10 mL) and with H $_2$ O (3 × 15 mL), and dried (Na $_2$ SO $_4$). Removal of the solvent under reduced pressure gives 2d; yield: 0.60 g (28%); mp 103–105°C.

C₁₇H₁₉OP calc. C 75.54 H 7.09 P 11.46 (270.3) found 75.76 7.24 11.52 For spectral data, see Table 1.

(1,2-Epoxy-1-ethylpropyl)diphenylphosphine Oxide (3d; $R^1=C_2H_5$, $R^2=CH_3$); Typical Procedure:

To a stirred suspension of 30% aqueous $\rm H_2O_2$ (1.2 mL) in $\rm CH_2Cl_2$ (10 mL) is added trifluoroacetic anhydride (2.0 mL), dropwise, over 5 min at 0 °C. Then the solution is allowed to warm to room temperature, and stirred for 30 min. A solution of phosphine oxide **2d** (1.23 g, 4.6 mmol) in $\rm CH_2Cl_2$ (10 mL) is then added over 12 h under reflux. The mixture is extracted with $\rm CH_2Cl_2$ (30 mL) and the extract is washed with 10% aqueous KHSO₃ (10 mL), saturated aqueous KHCO₃

Table 2. Compounds 3d-g Prepared

Product	Yield (%)	mp (°C)	Molecular Formula ^a	MS (M ⁺) m/z	IR (KBr) ν (cm ⁻¹)	1 H-NMR (CDCl ₃ /TMS) δ , J (Hz)
3d	95	154–156	$C_{17}H_{19}O_2P$ (286.3)	286	1205 (P=O); 870 (oxirane)	1.04 (t, 3 H, J_{HH} = 8, CH ₂ CH ₃); 1.32 (d, 3 H, J_{HH} = 5, CHCH ₃); 1.6-2.4 (m, 2 H, CH ₂); 2.6-2.9 (m, 1 H, CH); 7.3-8.2 (m, 10 H _{arom})
3e	94	7577	$C_{19}H_{23}O_2P$ (314.4)	314	1200 (P=O); 860 (oxirane)	0.88 (t, 3H, $J_{HH} = 6$, $CH_2CH_2CH_3$); 0.98 (t, 3H, $J_{HH} = 7$, CH_2CH_3); 1.3–2.2 (m, 6H, 3CH ₂); 2.61 (dt, 1H, $J_{HH} = 7$, $J_{HP} = 6$, CH); 7.2–8.1 (m, 10H _{arom})
3f	90	148–149	$C_{18}H_{19}O_2P$ (298.3)	298	1200 (P=O); 870 (oxirane)	1.1–2.4 (8 H, C_6H_8); 2.7–3.0 (m, 1 H, CH); 7.2–8.1 (m, 10 H_{arom})
3g	85	110-112	$C_{19}H_{21}O_{2}P$ (312.4)	312	1200 (P=O); 850 (oxirane)	1.0–2.3 (m, 10 H, C_7H_{10}); 2.6–2.9 (m, 1 H, CH); 7.2–8.1 (m, $10H_{arom}$)

 $^{^{}a}$ Satisfactory microanalyses obtained: C $\pm\,0.24,$ H $\pm\,0.16,$ P $\pm\,0.13.$

Table 3. Compounds 4 Prepared

Product	Yield (%)	mp (°C)	Molecular Formula ^a or Lit. mp (°C)	MS (M ⁺) m/z	IR (KBr) ν (cm ⁻¹)	1 H-NMR (CDCl ₃ /TMS) δ , J (Hz)
4 a	83	141-142	141-142 ¹⁰	260	3300 (OH); 1180 (P=O)	1.09 (dd, 3H, $J_{HH} = 7$, $J_{HP} = 16$, CH_3); 2.3–2.9 (m, 1H, CH); 3.5–3.9 (m, 2H, CH_2OH); 4.02 (s, 1H, OH); 7.2–7.9 (m, $10H_{arom}$)
4b	84	105–106	105–106 ¹⁰	274	3300 (OH); 1180 (P=O)	0.83 (t, 3 H, $J_{\rm HH}$ = 7, CH_2CH_3); 1.3–1.9 (m, 2 H, CH_2CH_3); 2.1–2.6 (m, 1 H, CH_3); 3.74 (dd, 2 H, $J_{\rm HH}$ = 5, $J_{\rm HP}$ = 16, CH_2OH); 4.08 (s, 1 H, OH); 7.1–7.9 (m, 10 $H_{\rm arom}$)
4c	85	185–187	168-170 ¹⁰	322	3400 (OH); 1180 (P=O)	2.77 (t, 1H, J_{HH} = 6, CH); 3.7–4.4 (m, 2H, C \underline{H}_2 OH); 4.47 (s, 1H, OH); 7.0–8.0 (m, 3 × C ₆ H ₅ , 15H _{arom})
4d	89	83–86	$C_{17}H_{21}O_2P$ (288.3)	288	3380 (OH); 1180 (P=O)	0.79 (t, 3 H, J_{HH} = 7, CH ₂ CH ₃); 1.18 (d, 3 H, J_{HH} = 7, CHCH ₃); 1.3-2.3 (m, 3 H, CHCH ₂); 3.64 (s, 1 H, OH); 3.9-4.6 (m, 1 H, CHOH); 7.2-8.0 (m, 10 H _{arom})
4e	91	157–159	$C_{19}H_{25}O_2P$ (316.4)	316	3400 (OH); 1180 (P=O)	0.5–1.0 (m, 6H, 2CH ₃); 1.0–2.0 (m, 6H, 3CH ₂); 2.0–2.4 (m, 1H, PCH); 3.7–4.2 (m, 1H, СНОН); 4.26 (s, 1H, OH); 7.2–8.0 (m, 10H _{arom})
4f	92	122-125	$C_{18}H_{21}O_2P$ (300.3)	300	3400 (OH); 1190 (P=O)	$0.9-2.0$ (m, 8 H, C_6H_8); $2.0-2.3$ (m, 1 H, PCH); $3.9-4.3$ (m, 1 H, CHOH); 4.06 (s, 1 H, OH); $7.2-8.0$ (m, $10H_{arom}$)
4g	82	132–134	$C_{19}H_{23}O_2P$ (314.4)	314	3370 (OH); 1170 (P=O)	1.1–2.0 (m, 10 H, C_7H_{10}); 2.0–2.4 (m, 1 H, PCH); 4.09 (s, 1H, OH); 4.0–4.4 (m, 1H, CHOH); 7.2–8.0 (m, 10 H_{arom})

 $^{^{}a}$ Satisfactory microanalyses obtained: C $\pm\,0.28,$ H $\pm\,0.20,$ P $\pm\,0.13.$

 $(2 \times 20 \text{ mL})$, and H₂O (10 mL). The organic layer is dried (Na₂SO₄) and the solvent removed under reduced pressure to give 3d; yield: 1.24 g (95%); mp 154–156°C.

C₁₇H₁₉O₂P calc. C 71.32 H 6.69 P 10.82 (286.3) found 71.53 6.82 10.93

For spectral data, see Table 2.

(2-Hydroxy-1-methylethyl)diphenylphosphine Oxide (4a; $R^1=CH_3$, $R^2=H$); Typical Procedure:

To a stirred solution of epoxide 3a (0.262 g, 1.0 mmol) in THF (10 mL) is added LiAlH₄ (0.050 g, 1.3 mmol) at 0°C and stirring is continued for 3 h at 0°C. Then, H₂O (1 mL) is added and the solution is neutralized with 2 N HCl. The solvent is removed under reduced pressure, the product is taken up in CHCl₃ (3×15 mL), and the extract is washed with H₂O (2×10 mL) and dried (Na₂SO₄). Removal of the solvent under reduced pressure gives 4a; yield: 0.219 g (83%); mp 141 – 142°C (Lit. 10 mp 141 – 142°C).

For spectral data, see Table 3.

Received: 3 April 1987; revised: 2 November 1987

- (1) Parker, R.E., Isaacs, N.S. Chem. Rev. 1959, 59, 737.
- (2) Griffin, C.E., Kundu, S.K. J. Org. Chem. 1969, 34, 1532.
- (3) Baboulene, M., Sturtz, G. Synthesis 1978, 456.
- (4) Sturtz, G., Pondaven-Raphalen, A. Tetrahedron Lett. 1978, 629.
- (5) Yamashita, M., Tsunekawa, K., Sugiura, M., Oshikawa, T., Inokawa, S. Synthesis 1985, 65.
- (6) Hays, H.R., Peterson, D.J., in: Organic Phosphorus Compounds, Vol. 3, Kosolapoff, G.M., Maier, L. (eds.), John Wiley & Sons, New York, 1979, p. 365.
- (7) Sobolev, V.G., Ionin, B.I. Zh. Obshch. Khim. 1985, 55, 225; C.A. 1985, 103, 22654.
- (8) Mislanker, D.G., Mugrage, B., Darling, S.D. Tetrahedron Lett. 1981, 22, 4619.
- (9) Saleh, G., Minami, T., Ohshiro, Y., Agawa, T. Chem. Ber. 1979, 112, 355.
- (10) Yamashita, M., Yamada, M., Tsunekawa, K., Inokawa, S. Bull. Chem. Soc. Jpn. 1983, 56, 3533.