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ABSTRACT: Template assistance allows organic reactions to 
occur under highly dilute conditions – where intermolecular 
reactions often fail to proceed – by bringing reactants into 
close spatial proximity. This strategy has been elegantly 
applied to numerous systems, but always with the retention of 
at least one of the templating groups in the product. In this 
report, we describe a traceless, templated amide-forming 
ligation that proceeds at low micromolar concentration under 
aqueous conditions in the presence of biomolecules. We 
utilized the unique features of an acylboronate–
hydroxylamine ligation, in which covalent bonds are broken in 
each of the reactants as the new amide bond is formed. By 
using streptavidin as a template and acylboronates and O–
acylhydroxylamines bearing desthiobiotins that are cleaved 
upon amide formation, we demonstrate that traceless, 
templated ligation occurs rapidly even at sub-micromolar 
concentrations. The requirement for a close spatial 
orientation of the functional groups – achieved upon binding 
to streptavidin – is critical for the observed enhancement in 
the rate and quantity of product formed. 

Templated organic reactions are widely used by biological 
systems to accelerate covalent bond formation by bringing 
reactants in close proximity and increasing their effective 
concentration;1 well-known examples include ribosomal 
peptide synthesis and DNA ligation. The same principles have 
been applied in purely synthetic template-promoted 
reactions2 and notable successes include DNA-and PNA-
templated ligation.3 Despite the elegance of these approaches 
and applications to areas such as DNA-templated synthesis, 
proximity-driven mapping of binding pockets4 and 
combinatorial synthesis,5 their utility for broader synthetic 
applications is limited by the persistence of at least one of the 
templating groups (Figure 1a-c).3d,6,7 For example, a number 
of template-assisted native chemical ligations (NCL) take 
place with release of one templating scaffold, but the second 
must be installed at a distal site of the other reactant (Figure 
1b).8,9 To address this limitation, Diederichsen et al. disclosed 

a photocleavable PNA-templated native chemical ligation 
(NCL)10 that allows cleavage of the directing PNA strands 
from the ligated peptide by irradiation.11 However, a traceless, 
templated ligation in which the templating moieties are 
cleaved concomitantly with bond formation12  has not been 
successfully implemented, likely due to the lack of covalent 
bond-forming reactions suitable for this purpose.  

 

 
Figure 1. Schematic representation of types of templated 
reactions. (a) Complementary template-assisted reactions 
without directing scaffold release. (b) Complementary template-
assisted reactions with partial directing scaffold release. (c) 
External template-assisted reactions without directing scaffold 
release. (d) This work: External template-assisted amide-forming 
ligations with concomitant release of the directing scaffolds.  
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Figure 2. (a) Streptavidin-templated ligation of acylboronates and O-acylhydroxylamines, each bearing a desthiobiotin connected to the 
departing section of their respective functional groups. (b) Specific molecules used for this study (see Supporting Information for 
detailed synthetic routes).  

During the course of our studies on amide-forming ligations 
from acylboronates,13,14 we identified variants that fulfilled the 
rare criteria of simultaneous cleavage of two derivatizable 
groups during an intermolecular coupling reaction,15 offering 
the possibility for true traceless templated reactions. In this 
manuscript, we demonstrate templated amide-formation in 
water at low micromolar concentrations using desthiobiotin 
as the ligand and streptavidin as the template. This work 
anticipates a generic approach to conjugations that overcome 
the inherent limitations in the rate of non-enzymatic coupling 
reactions. Detailed kinetics analysis and modeling show that 
template-induced proximity of the two reaction partners 
substantially enhances product formation above the 
background rate.   

The reaction of acylboronates bearing pyridine-derived 
ligands and O-acylhydroxylamines results in the formation of 
amide bonds with the simultaneous loss of both the ligated 
boron and the carbamate by N–O bond cleavage (Figure 
2a).13 The template binding groups can be located in regions 
of the reaction partners that are cleaved during the ligation, 
which would result in traceless, templated product formation. 

Importantly, it occurs under aqueous conditions without the 
need for any other reagents or catalysts – making it suitable for 
use in the presence of biological molecules.  

As our molecular template of choice, we selected the 
streptavidin-desthiobiotin pair by linking the ligating 
functional groups to desthiobiotin. The approach builds on a 
long history of streptavidin as a template for inducing 
molecular proximity, including elegant work from Ward on 
the development of streptavidin-based artificial 
metalloenzymes.16 Furthermore, Winssinger has previously 
demonstrated that two distinct reactants can be brought into 
proximity through a similar system for the template-assisted 
photocatalyzed azide reduction.17,18 Streptavidin displays a 
particular arrangement of its four binding pockets, located so 
that two of them are in spatial proximity to each other.19 Its use 
has the disadvantage of being able to form non-productive 
complexes, but considerably simplifies the synthesis of the 
substrates and employs a readily available template with a low 
dissociation constant (KD ~ 10–14 M for biotin and ~10–11 M 
for desthiobiotin) and fast association kinetics (kon >106 M–1 
s–1).20  
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Figure 3. (a) Experiments performed using hydroxylamines 1a–d (1.0–5.0 µM), acylboronates 2a–d (0–10.0 equiv) and expressed 
streptavidins (S, 0–4.0 equiv) in aqueous citric acid / sodium citrate buffer pH 6.0 (25 mM) at 25 °C. Product formation monitored by 
fluorescence (lex = 430 nm, lem = 485 nm). All plots are mean values from three replicates (error bars are omitted for clarity). (a)-1: 
Conversion plot comparing the reaction in the presence or absence of added biotin (10.0 equiv). Performed with 1a (5.0 µM), 2a 
(2.0 equiv) and tetravalent S (0.5 equiv). (a)-2: Performance of different streptavidin mutants in the reaction. Performed with 1a 
(5.0 µM) and 2a (2.0 equiv). (a)-3: Streptavidin loading studies. Performed with 1a (5.0 µM) and 2a (2.0 equiv). (a)-4: Effect of linker 
length. Performed with 1a–1d (1.0 µM), 2a–2d (10.0 equiv) and tetravalent S (0.5 equiv). (b) Isolation of the association complex 1a–
S between 1,2-divalent streptavidin and 1a; FPLC traces of the purified protein at different wavelengths. A conversion plot over time for 
the reaction of 1a–S (5.0 µM) with 2a (2.0 equiv) is shown on the bottom-right corner. 
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The association of two different biotin-equipped starting 
materials with streptavidin could produce a number of 
different spatial combinations, most of which lead to non-
productive associations. While using a weakly associating 
ligand may allow it to dissociate from unproductive 
arrangements, such a system would unnecessarily complicate 
the analysis of the ligation and kinetics. We therefore elected 
to use desthiobiotin and adopted two approaches to minimize 
non-productive binding arrangements during our validation 
of a true traceless templated ligation. First, we employed a 
small excess of one ligation partner to ensure that as many 
productive orientations as possible were formed. Second, we 
followed the convenient procedure of Howarth and co-
workers to express and separate streptavidin mutants having 
different valencies and spatial arrangements of the binding 
pockets.21  

To accurately monitor the rate of ligation we designed 
starting materials whose conversion could be determined at 
low concentrations by real-time fluorescence measurements 
(Figure 2b). Hydroxylamine 1a was equipped with a 
coumarin fluorophore attached to the N-atom and a 4-
(dimethylaminophenylazo) benzenesulfonyl (DABSYL) 
quencher was connected to the cleavable part of the molecule 
– the O-acyl side – along with a desthiobiotin and a 
polyethylene glycol (PEG) linker. This design allows for 
internal fluorescence quenching of the coumarin moiety 
(FRET effect); as the reaction proceeds the fluorophore and 
the quencher on 1a are separated by the N–O bond cleavage, 
resulting in an increase in the fluorescence signal output 
(Figure 3a). Acylboronate 2a bearing a desthiobiotin attached 
to the ligand on boron via a short PEG linker could be easily 
prepared in two steps from commercially available potassium 
acyl trifluoroborate (KAT) reagent 4.22 As the rate of KAT 
ligations are strongly influenced by pH,23 we chose aqueous 
buffers at pH 6.0 – as the expected rate was low enough to 
benefit from templation with a moderate background rate at 
low micromolar concentrations. Streptavidin is well known to 
be stable at this pH.24  

With the starting materials in hand, we screened a number 
of streptavidin mutants and reaction conditions. In a typical 
experiment, 1a (1.0 equiv) was initially mixed with 
streptavidin in aqueous citrate buffer (pH 6.0) for 5 min 
followed by addition of 2a (2.0 equiv). The reaction was 
monitored by fluorescence (lex = 430 nm, lem = 485 nm) over 
time. The coupling of 1a and 2a in the presence of expressed 
tetravalent streptavidin (Figure 3a-1, dark red dots) was 
accelerated over the background (orange dots), and as 
compared to a negative control experiment in which excess 
biotin was added to block streptavidin binding pockets (grey 
dots). The stability of reagent 1a and streptavidin during the 
course of the reaction was confirmed by fluorescence 
measurements (Figure 3a-1, black dots). After reaching the 

plateau, experiments were analyzed by LC-MS to confirm the 
final conversion values (see the Supporting Information). 
Only desired amide product 3, unreacted starting materials 1a 
and 2a, and byproducts derived from the cleavage of 1a and 
2a could be observed by LC-MS analysis of the mixture. 

The reaction exhibited templated ligation only in the 
presence of tetravalent and 1,2-divalent (“cis”) streptavidins; 
monovalent and 1,3- or 1,4 (“trans”) streptavidins did not 
show any enhancement over the background reactivity 
(Figure 3a-2). Streptavidin loading studies showed that the 
optimal loading is 0.5 equiv relative to 1a for tetravalent 
streptavidin and 1.0 equiv for the 1,2-divalent mutant. This is 
in excellent agreement with the number of possible matching 
combinations of starting materials (Figure 3a-3). We 
examined a variety of hydroxylamines and acylboronates 
having different linker lengths between the desthiobiotin unit 
and the ligating functional groups (Figure 3a-4); optimal 
performance was found when a short PEG linker was 
employed (1a and 2a). The use of longer PEG chains (1b, 1c 
and 2b, 2c) resulted in slightly diminished performance and a 
short alkyl spacer (1d and 2d) showed no acceleration over 
the background rate.  

To further confirm our hypothesis that streptavidin assists 
the amide formation by binding both 1a and 2a, we formed a 
1:1 complex (1a–S) of 1,2-divalent streptavidin and 1a and 
isolated it by FPLC. Upon addition of 2.0 equiv of 2a at 
5.0 µM (Figure 3b), we observed rapid formation of the amide 
product and good overall conversion. Addition of biotin to 
block the binding pockets again resulted in a considerable 
decrease of initial rate and conversion. This result shows 
clearly that productive binding of the acylboronate and 
hydroxylamine in adjacent streptavidin binding sites is 
responsible for the increase in the observed rate of amide 
formation.  

To a first approximation, the formation of amide 3 is 
expected to depend on two processes: 1) template-assisted 
formation of 3 from the productive association of reagents 1 
and 2 into two proximal streptavidin pockets – a step 
governed by the first-order rate constant kT. 2) The 
background reaction of 1 and 2, represented by the second-
order rate constant kB. 

To provide a mathematical model for the effect of 
templation on the rate of product formation, we adopted 
pseudo-first order conditions ([2] ≥ 10·[1]). The 
corresponding integrated rate equation adopts a bi-
exponential form as shown in Equation 1. 
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(1) 

The first exponential term corresponds to product 
formation from template assistance – a parameter directly 
proportional to the fraction of productive associations of 
starting materials 1 and 2 to streptavidin (F parameter). The 
second term expresses the conversion of product due to non-
templated, background processes. Under first-order 
conditions, the background exponent contains the 
concentration of reagent 2 as a constant parameter. 

To further evaluate the validity of our model, we conducted 
kinetics experiments under pseudo-first order conditions 
(Figure 4). We compared a number of reaction plots 
conducted at different concentrations but with comparable 
setup and reagent equivalencies. The conversion over time 
curve at 5.0 µM was fitted to Equation 1 with 85% templation 
amplitude (F factor) and a templation rate constant of 
kT » 4 • 10–5 s–1 by constraining the background rate constant 
(kB) to 0.2 M–1 s–1 (red dots).25 A slightly lower templation 
amplitude and constant (kT and F) were obtained when 
fitting Equation 1 to the plot measured at 1.0 and 0.5 µM 
concentration (blue and green dots respectively). The 
background reaction followed a monoexponential growth 
(black dots). The background rate constant was lower in the 
presence of streptavidin, a factor that we attributed to the 
increased steric hindrance of bound reagents compared to 
when they are in solution. 

In conclusion, we have established a streptavidin-templated 
reaction of desthiobiotin-equipped hydroxylamines 1 and 
acylboronates 2 with traceless formation of the corresponding 
amide. The reaction achieves high levels of conversion, even 
at 500 nM – far above the conversion expected from the 
background reaction alone. The present approach to 
templated-ligation establishes that successful traceless 
templated reactions can provide substantial enhancement in 
conversion and can be implemented with a straightforward 
streptavidin–desthiobiotin binding pair. This approach will 
be useful for applications in both signaling and 
chemoselective conjugations under dilute aqueous 
conditions.  

 

 

Figure 4. Kinetics experiments under pseudo-first order 
conditions fitted to Equation 1. Dots represent mean data points 
from three experiment replicates performed with 1a (0.5–
5.0 µM), 2a (10.0 equiv) and tetravalent streptavidin (S, 0–
0.5 equiv) in aqueous citrate buffer pH 6.0. Error bars are omitted 
for clarity. Lines are non-linear fits from Equation 1 using the 
fitted parameters inside the grey boxes (bottom part). 
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