Anionic α-Perhalogenation of S-Alkyl-S-aryl-N-p-toluenesulfonylsulfoximines with Hexahaloethanes

Carl R. JOHNSON*, Albert TANGERMAN

Department of Chemistry, Wayne State University, Detroit, Michigan 48 002, U.S.A.

We have previously described the preparation and reactions of α -halosulfoximines prepared by methods based on t-butyl hypochlorite. α -Halo-N-tosylsulfoximines were prepared indirectly by halogenation of N-H-sulfoximines followed by N-tosylation. Attempts to α -brominate N-tosylsulfoximines under radical conditions with N-bromosuccinimide resulted in bromination of the tolyl methyl group. In this paper, we describe simple and high yield methods for the preparation of α -halo derivatives of N-tosylsulfoximines utilizing hexachloroethane and 1,2-dibromo-1,1,2,2-tetrachloroethane. Hexachloroethane has been previously employed in the halogenation of sulfones.

N-Tosylsulfoximines 1 when treated with sodium hydride and the hexahaloethane (2) in dimethylformamide overnight at room temperature gave excellent yields of halogenated sulfoximines 3 (Table 1). Reactions with dibromotetrachloroethane (2; X = Br) required excess base and dibromide to go to completion due to a bromine-producing side-reaction.

$$\begin{array}{c} C_{6}H_{5} - \overset{\circ}{\underset{||}{\text{II}}} - CH_{n}(R)_{3-n} & + \text{ n NaH } + \text{ n } \text{ Cl}_{2}\overset{\circ}{\text{C}} - \text{CCl}_{2} \\ & \overset{\circ}{\underset{||}{\text{II}}} \\ & \text{N-Tos} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Presumably, the mechanism of these reactions involves nucleophilic attack of the sulfonimidoyl carbanion on the hexahaloethane³, e.g.:

$$C_{6}H_{5} = S - CH_{2} + CI - CI - CI - CI - CI_{2} -$$

Under the reaction conditions used, the introduction of each subsequent halogen occurs with increasing rapidity in accordance with the decreasing pK_a of the substrate [1 (n=3), $pK_a=24.5$; 1 (n=2), $pK_a=20.7\pm0.2$; 1 (n=1), $pK_a=16.9\pm0.3$]. Treatment of 1 (n=3) with one equivalent each of sodium hydride and hexachloroethane under the usual conditions resulted in a 2:1 mixture of starting sulfoximine and trichloro product 3a. Possibly due to a combina-

$$\begin{array}{c} O \\ II \\ C_6H_5 - S - CX_n(R)_{3-n} \\ II \\ N - Tos \end{array} + (C_6H_5)_3P \xrightarrow{\begin{array}{c} H_2O/C_2H_5OH \\ reflux, 1h \\ \hline -(C_6H_5)_3PO \end{array}}$$

$$C_6H_5 - S - CH_xX_y(R)_{3-n}$$
 $N - Tos$

Table 1. α -Halogenation of N-Tosylsulfoximines 1 with Hexachloroethane (2; X = Cl) or 1,2-Dibromo-1,1,2,2-tetrachloroethane (2; X = Br)

[-CX _n (R) ₃ in produc	,	Yield [%]	m.p. [°C]	Molecular formula	¹H-N.M.R. (CDCl ₃) δ [ppm]	I.R. (CHCl ₃) v [cm - ']
3						
3a - cci	13	82	105-106°	C ₁₄ H ₁₂ Cl ₃ NO ₃ S ₂ (412.7)	2.41 (s, 3 H); 7.2-8.3 (m, 9 H)	1160, 1120, 1090, 1068
3b - cci	1 ₂ -CH ₃	81	119-120°	$C_{15}H_{15}CI_2NO_3S_2$ (392.3)	2.36 (s, 3 H); 2.39 (s, 3 H); 7.1-8.2 (m, 9 H)	1159, 1112, 1086, 1060
3c -CH	−C ₆ H ₅	85 ^b	146-147° 134-136°	$C_{20}H_{18}ClNO_3S_2$ (420.0)	2.40 (s, 3 H); 6.67 (s, 1 H); 7.30 (s, 5 H); 7.1–8.0 (m, 9 H) 2.40 (s, 3 H); 6.70 (s, 1 H); 7.30 (s, 5 H); 7.1–8.0 (m, 9 H)	1153, 1088, 1063
3d -cci	l ₂ C ₆ H ₅	86	120-121°	$C_{20}H_{17}CI_2NO_3S_2$ (454.4)	2.39 (s, 3 H); 7.0-8.0 (m, 14 H)	1157, 1105, 1089, 1066
3e CI X	<i>)</i>	97	39~40°	$C_{19}H_{22}CINO_3S_2$ (412.0)	1.1-2.4 (m, 10 H); 2.40 (s, 3 H); 7.1-8.2 (m, 9 H)	1154, 1099, 1088, 1064
3f _{C1}		93	77-78°	$C_{18}H_{20}CINO_3S_2$ (398.0)	1.6-2.4 (m, 6 H); 2.40 (s, 3 H); 2.4-3.05 (m, 2 H); 7.05-8.1 (m, 9 H)	1156, 1100, 1089, 1066
3g −CBr	r ₃	84	104-106°	$C_{14}H_{12}Br_3NO_3S_2$ (546.1)	2.42 (s, 3 H); 7.2-8.45 (m, 9 H)	1160, 1108, 1089, 1064
3h −CBr	r ₂ -CH ₃	82	82-83.5°	$C_{15}H_{15}Br_2NO_3S_2$ (481.3)	2.41 (s, 3 H); 2.73 (s, 3 H); 7.15-8.2 (m, 9 H)	~~
3i -CBr	r ₂ -C ₆ H ₅	76	134135°	$C_{20}H_{17}Br_2NO_3S_2$ (543.3)	2.38 (s, 3 H); 7.05-7.9 (m, 14 H)	1153, 1088, 1061

^a Satisfactory microanalyses obtained: C ± 0.30 , H ± 0.30 .

Table 2. Reductive Dehalogenation of α -Halosulfoximines 3

$\begin{bmatrix} -CX_n(R)_{3-n} \end{bmatrix}$ in substrate 3	(C ₆ H ₅) ₃ P equiv. used	$\begin{bmatrix} -CH_xX_y(R)_{3-n} \end{bmatrix}$ in product 4	Yield [%]	m.p. [°C]	Molecular formula ^a or Lit. m.p.	1 H-N.M.R. (CDCl ₃) δ [ppm]	LR. (CHCl ₃) v [cm ⁻¹]
-CCI ₃	1	- CHCI₂	99	106-107.5°	C ₁₄ H ₁₃ Cl ₂ NO ₃ S ₂ (378.3)	2.41 (s, 3 H); 7.41 (s, 1 H); 7.2-8.2 (m, 9 H)	
-CCI3	2	- CH ₂ CI	95	155-156°	155-15611		
− CCl ₂ −CH ₃	1	CI - CH−CH₃	90 ⁶	115-117° 95-100°	C ₁₅ H ₁₆ CINO ₃ S ₂ (357.8) C ₁₅ H ₁₆ CINO ₃ S ₂ (357.8)	1.82 (d, 3 H, J=6.5 Hz); 2.40 (s, 3 H); 5.51 (q, 1 H, J=6.5 Hz); 7.1-8.1 (m, 9 H) 1.82 (d, 3 H, J=6.5 Hz); 2.40 (s, 3 H); 5.65 (q,	1155, 1089, 1068, 1047 1154, 1100 (sh), 1088, 1067, 1050 (sh)
- CBr ₃	2	— СН ₂ Вг — СН ₃	92 90	156-157.5° 107-109°	C ₁₄ H ₁₄ BrNO ₃ S ₂ (388.3) 107-109° 7	1 H, J=6.5 Hz); 7.1-8.1 (m, 9 H) 2.41 (s, 3 H); 5.80 (AB-q, 2 H); 7.15-8.15 (m, 9 H)	1155, 1110, 1088, 1065

^{*} Satisfactory microanalyses obtained: C ±0.30, H ±0.30.

tion of steric and electronic effects, monochlorination of the benzyl substrate could be achieved (Table 1).

Stepwise reductive dehalogenation of the α -polyhalosulfoximines could be readily achieved using triphenylphosphine⁵ in 95% ethanol at reflux for one hour (Table 2). Whereas monobromo compounds were reduced to the parent sulfoximine, the monochloro sulfoximines were inert under these conditions.

Chlorination of N-Tosylsulfoximines 1 with Hexachloroethane (2; X = CI):

To a solution of N-tosylsulfoximine 1 (1 mmol) in dry dimethylform-amide (5 ml) under a nitrogen atmosphere are added sodium hydride

(n mmol; as a 50% oil dispersion) and hexachloroethane (2; X = Cl; n mmol: n = number of hydrogens to be substituted). The mixture is stirred overnight at room temperature, quenched with aqueous ammonium chloride solution (10 ml), and extracted with diethyl ether (2 × 10 ml). The ether layer is washed with saturated sodium chloride solution (2 × 10 ml). After drying with anhydrous magnesium sulfate, the ether is evaporated and the crude product 3 is recrystallized from diethyl ether/pentane (Table 1).

Bromination of N-Tosylsulfoximines 1 with 1,2-Dibromo-1,1,2,2-tetrachloroethane (2; X = Br):

The procedure followed is similar to that above except (n+2) mmol of sodium hydride and (n+1) mmol of 1,2-dibromo-1,1,2,2-tetrachloro-ethane' are used (Table 1).

b Reaction using 1 equivalent of sodium hydride; 1:1 mixture of diastereomers formed.

Product is a 2:1 mixture of diastereomers.

Reductive Dehalogenation of Halosulfoximines 3 with Triphenylphosnhine:

A solution of the halosulfoximine 3 (1 mmol) and triphenylphosphine (1 or 2 mmol) in 95% ethanol (10 ml) is refluxed with stirring for 1 h. In some instances, upon cooling the reaction mixture, the desired sulfoximine 4 crystallizes in pure form, otherwise the alcohol is evaporated and the crude sulfoximine 4 is recrystallized from diethyl ether/pentane or purified by column chromatography on silica gel with dichloromethane as eluent (Table 2).

This work was supported by a grant from the National Science Founda-

Received: June 23, 1981 (Revised form: November 3, 1981)

0039-7881/82/0432-0288 \$ 03.00

© 1982 Georg Thieme Verlag · Stuttgart · New York

¹ C. R. Johnson, H. G. Corkins, J. Org. Chem. 43, 4136 (1978).

C. R. Johnson, H. G. Corkins, J. Org. Chem. 43, 4140 (1978).
 H. G. Corkins, L. Veenstra, C. R. Johnson, J. Org. Chem. 43, 4233 (1978).

³ J. Kattenber, E. R. de Waard, H. O. Huisman, *Tetrahedron* **29**, **4149** (1973); **30**, 463 (1974).

Measurements made in dimethyl sulfoxide. We thank Prof. F. G. Bordwell and Dr. John Branca for these data.

⁵ α-Halosulfones have been reduced with triphenylphosphine: F. G. Bordwell, E. Doomes, P. W. R. Corfield, J. Am. Chem. Soc. 92, 2581 (1970).

H. Hoffman, H. Forster, Tetrahedron Lett. 1963, 1547.

⁶ Available from Pfaltz and Bauer, Inc.

⁷ C. R. Johnson, R. A. Kirchhoff, R. J. Reischer, G. F. Katekar, J. Am. Chem. Soc. 95, 4287 (1973).