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Abstract: An approach toward the synthesis of N-heterocyclic an-
ionic ionic liquids is described. The ionic liquids are readily ob-
tained by the treatment of the sodium salt of the parent N-
heterocycle with the halide salt of the desired cation. Good to excel-
lent yields (62–99%) of the corresponding ionic liquids are obtained
without the use of excessive materials and time associated with con-
ventional methods for synthesizing heterocyclic based ionic liquids.
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The study of ionic liquids (ILs) constitutes one of the fast-
est growing areas of research in academia and industry.1

The interest in ILs is primarily due to their exceptional
utility as a broad class of materials for a wide range of ap-
plications. Characterized by a low vapor pressure, low
flammability, aqueous solubility, and high thermal stabil-
ity, ILs have become increasingly important as materials
for phase-transfer catalysis,2 biocatalysis,3 liquid mem-
branes,4 solar cell design, electrodeposition, lithium bat-
teries,5 and chemical separations. Additionally, their use
as polar solvents in synthetic transformations highlights
their potential as a green alternative to conventional or-
ganic solvents.6 In spite of these attractive characteristics,
the synthetic approach towards construction of ILs with
heterocyclic-based anions employs a method which re-
quires excessive amounts of solvent, reagents, and time.7

However, the benefits associated with the potential to tune
the physiochemical properties of ILs to optimize perfor-
mance parameters through the design of functionalized
heterocyclic frameworks, make the addressing of these is-
sues one of primary importance.7

Our interest in the design and synthesis of ILs stems from
recent reports highlighting their use as working fluids for
the gas-phase separation of pre- and postcombustion
CO2.

8 Although efforts in this area have focused on opti-
mizing the chemical and physical absorption properties of
CO2, there remains a need for an effective method for the
large-scale synthesis of ILs efficiently and rapidly, from a
variety of heterocyclic scaffolds. Most custom ILs de-
signed for these purposes contain an anionic component
with an unsymmetrical phosphonium or imidazolium
counterion to enhance the fluidic properties of the materi-
al.9 The most common method for the synthesis of the

phosphonium salts involves the acid–base neutralization
of a protonated anion precursor and the appropriately li-
gated phosphonium hydroxide.10 Although generally ef-
fective for common ILs, obtaining the unsymmetrical
phosphonium hydroxide requires an anion exchange of
the corresponding phosphonium halide that involves pro-
longed reaction times and excessive amounts of hydrox-
ide and solvents. Thus, a method that provides the desired
IL in a single synthetic operation from the protonated an-
ion precursor, without the need for chromatography, in
high levels of purity and without extended reaction times
that is readily scalable would facilitate the further devel-
opment of this increasingly important class of materials.
We speculated that a simple cation-exchange protocol in-
volving metalation of the protonated heterocycle 1 with
either NaH or NaOMe, followed by addition of the desired
phosphonium bromide 2 or imidazolium salt 3 directly,
would provide ILs 4 and 5, respectively after a simple
aqueous workup (Scheme 1).11 Herein we report the suc-
cessful implementation of this method design in the syn-
thesis of a wide assortment of N-heterocyclic anion-based
ILs in a highly efficient and cost-effective manner that is
readily amenable to large-scale production.

Scheme 1  Cation exchange approach towards IL synthesis

In general, ILs 4 were obtained in good to excellent yields
by treatment of N-heterocycle 1 with either NaH (condi-
tions A12) or NaOMe (conditions B12) followed by the ad-
dition of phosphonium bromide 2a (Table 1). For
example, applying conditions A to 2-cyanopyrrole (1a)
and 2a yielded pyrrolide IL 4a in 91% (Table 1, entry 1).
The addition of one equivalent of NaOMe to bipyrrole 1b
provided IL 4b in 88% yield (Table 1, entry 2). Triazolide
IL 4c was readily obtained in 76% yield (Table 1, entry 3).
Pyrazoles 1d–f proved to be effective precursors for the
synthesis of IL 4d–f in excellent yields (Table 1, entries
4–6). The bisthiophene-substituted imidazole-based IL 4g
was obtained in 62% yield (Table 1, entry 7). These re-
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sults demonstrate the applicability of this cation-exchange
protocol for the generation of N-heterocyclic anion-based
IL without the need for phosphonium hydroxide synthe-
sis.

Given the general utility of imidazolium-based ILs,13 we
next examined the formation of ILs 5 resulting from the
exposure of heterocycles 1a or 1h with imidazolium ha-

lide salts 3 to NaH (Table 2). Cyanopyrrole 1a was readily
converted into IL 5a with N,N-bismesityl imidazolium
chloride 3a in 70% yield (Table 2, entry 1). The alkyl/al-
kyl, aryl/alkyl, and alkyl/benzyl imidazolium salts 3b–d
provided the corresponding triazolide ILs 5b–d, respec-
tively (Table 2, entries 2–4). Interestingly, the meth-
yl/MOM-substituted imidazolium salt 3e provided IL 5e
in 60% yield (Table 2, entry 5). It is noteworthy that in the
formation of ILs 5a–e only trace quantities of the corre-
sponding N-heterocyclic carbenes resulting from C2–H
abstraction by the heterocyclic anion were observed by 1H
NMR spectroscopy.14

With a general approach established for the synthesis of
phosphonium and imidazolium ILs derived from readily

Table 1  Heterocyclic Anionic Phosphonium Ionic Liquidsa

Entry 4 Conditions Yield (%)b

1

4a

A 91

2

4b

B 88

3

4c

A 76

4

4d

A 99

5

4e

A 70

6

4f

A 81

7

4g

B 62

a Conditions A: 1 (1.0 equiv), 2a (1.0 equiv), and NaH (1.0 equiv) in 
THF (0.1 M), 18 h. Conditions B: 1 (1.0 equiv), 2a (1.0 equiv), and 
NaOMe (1.0 equiv) in MeOH (0.1 M), 18 h.
b Isolated yields.
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Table 2  Heterocyclic Anionic Imidazolium Ionic Liquidsa

Entry 1 3 5 Yield (%)b

1 1a

3a
5a

70

2 1h

3b
5b

96

3 1h

3c
5c

72

4 1h
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5 1h
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a Conditions: same as A, Table 1.
b Isolated yields
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obtained unsymmetrical tetraalkyl phosphonium and im-
idazolium halides, we turned our attention toward evalu-
ating this method with functionalized cation precursors. In
general, good to excellent yields of triazolide ILs 4 and 5
were obtained from the treatment of triazole (1i) and a di-
verse array of phosphonium and heterocyclic halide salts
with NaOMe in MeOH (Table 3). Based on a recent report
by Tsunashima and co-workers that the presence of phos-
phorus alkyl ether ligands decreased the viscosity of phos-
phonium bistriflamide ILs,15 we initially examined the
formation of methyl ether phosphonium triazolide ILs
employing this cation-exchange protocol. Treatment of
triazole (1i) with NaOMe in MeOH followed by the addi-
tion of MOM-substituted tributyl phosphonium chloride
provided ILs 4h in a respectable 72% yield (Table 3, entry
1). Truncating the straight alkyl chains on the phosphoni-
um cation to methyl did not hinder the formation of IL 4i
(Table 3, entry 2). Likewise, the length of alkyl substitu-
tion on the oxygen-bearing phosphonium ligand proved
inconsequential to IL synthesis (Table 3, entry 3). The
MEM-substituted phosphonium triazolides 4k and 4l
were obtained in 77% and 76% yields, respectively (Table
3, entries 4 and 5). Employing the corresponding SEM-
substituted phosphonium chloride provided the triazolide
IL 4m in 75% yield (Table 3, entry 6). Given the propen-
sity for imidazolium ILs to generate N-heterocyclic car-
benes in situ, we examined C2 alkyl-substituted
imidazolium halides to prohibit carbene formation.16

Thus, imidazolium ILs 5f and 5g bearing MOM- and
MEM-protected primary alcohols at C2 were obtained in
good yields (Table 3, entries 7 and 8). Finally, the triazo-
lium-based IL 5h was obtained in 91% yield (Table 3, en-
try 9).

Based on recent reports, most notably by Johnston and co-
workers, on the synthetic utility of phosphite anions,17 we
examined the application of this cation-exchange protocol
for the synthesis of phosphite anion-based ILs. Gratify-
ingly, treatment of diphenylphosphite 6 with NaH fol-
lowed by the unsymmetrical phosphonium bromide 2a or
imidazolium chloride 3a provided phosphite ILs 7 and 8
in 78% and 65% yield, respectively (Equation 1). Al-
though a relatively unexplored IL motif, phosphite-based
ILs offer a number of opportunities for performance opti-
mization through structural modification of the phosphite
precursor.

Equation 1

One challenge in applying functionalized ILs as working
fluids for industrial purposes is the development of a syn-
thetic method that is readily amenable to large-scale pro-

duction. Therefore, we examined the scalability of this
modified cation-exchange protocol using triazole (1i) in
the synthesis of the corresponding phosphonium-based
ILs (Table 4). Employing a series of unsymmetrical tet-

Ph2PH Ph2P
cationNaH, THF;

then X   [cation]

OO

6

cation = P666(14)

NMesMesN 8:

7: 78%

65%

Table 3  Cation Functional Variabilitya

Entry X Ionic liquid Yield (%)b

1 Cl

4h

72

2 Cl

4i

73

3 Cl

4j
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4 Cl

4k
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6 Cl
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7 Br
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9 Br

5h
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a Conditions: same as B, Table 1.
b Isolated yields.
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raalkyl phosphonium bromides, the corresponding tri-
azolide ILs 4n–p were obtained in yields ranging from
70–96% on 120 g scale (Table 4, entries 1–3).

In conclusion, we have developed a complementary meth-
od for the synthesis of functionalized phosphonium and
N-heterocyclic cation based ILs that relies on the ease of
Na+ ion cation exchange. The method described herein is
applicable to a diverse array of anionic and cationic com-
ponents containing an assortment of different functional
groups. This protocol allows for the direct use of phospho-
nium halides that obviates the conventional requirement
of phosphonium hydroxide synthesis and avoids the com-
plications associated with excessive solvent, reagents, and
extended reaction times. The reaction is amenable to
large-scale production and requires a simple aqueous
wash or filtration to obtain the desired ILs in high levels
of purity. Given the ever-increasing interest in functional-
ly diverse ILs, this method should facilitate the discovery
of new applications for this important class of materials.
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