


PII: S0957-4166(96)00409-0

## A Short Efficient Preparation of (+) and (-)-trans-2-Phenylcyclohexanol

Bryon E. Carpenter, Ian R. Hunt and Brian A. Keay\* Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada, T2N 1N4

**Abstract:** Both enantiomers of *trans-2*-phenylcyclohexanol (1) (Whitesell's auxiliary) have been prepared in a facile three step sequence starting from phenylmagnesium bromide and cyclohexene oxide using Lipase PS30 to facilitate the resolution of the racemic alcohol (10g) by a kinetic acetylation reaction on a preparative scale. Copyright © 1996 Elsevier Science Ltd

Enantiomerically pure substituted cyclohexanols are important chiral materials for asymmetric synthesis.<sup>1</sup> Interest in these types of systems was initiated by Corey and Ensley in 1975 with (-)-8-phenylmenthol which can be made in 5 steps from (+)-pulegone.<sup>2</sup> Although this auxiliary is probably one of the most powerful available to the synthetic organic chemist, it is hampered by a less than satisfactory synthesis resulting in the high cost of these materials. This limitation prompted Whitesell and co-workers<sup>3</sup> to develop *trans-2-*phenylcyclohexanol (1) as a more practical alternative. (1) has proved to be a very effective chiral auxiliary in a variety of organic reactions.<sup>1</sup> Several synthetic routes to enantiomerically pure (1) via either asymmetric synthesis or resolution methods have been reported. The key steps of the asymmetric syntheses are hydroboration,<sup>4</sup> epoxidation<sup>5</sup> or osmium catalyzed dihydroxylation<sup>6</sup> of phenylcyclohexene. Resolution of racemic (1) has been achieved by preparation of diastereomeric salts<sup>7</sup> and enzymatic hydrolytic kinetic resolution of racemic acetate or chloroacetate derivatives.<sup>8</sup> Herein, we report a quick and efficient synthesis that provides *both* antipodes of (1) in *a total* of only *three* steps by utilising a user friendly preparative scale kinetic acetylation of racemic (1) as the key resolution step (Scheme 1).



Racemic (1) was synthesized according to Whitesell's procedure<sup>9</sup> via a copper catalyzed addition of phenylmagnesium bromide to cyclohexene oxide. Using Ogasawara's<sup>10</sup> recently reported procedure for resolving *trans*-2-(1-naphthyl)cyclohexanol, racemic (1) was treated with vinyl acetate and Lipase PS30 on Celite<sup>11</sup> in *t*-butyl methyl ether. This methodology has proved to be very satisfactory for the following reasons: i. the enzyme is used in an organic solvent and needs no careful buffering or temperature control, ii. the progress of the acetylation can be monitored by chiral HPLC,<sup>12</sup> iii. the enzyme can be removed and recovered for reuse by simple filtration, and iv. is applicable to a large scale reaction.<sup>13</sup> Chromatography provided unreacted alcohol (+)-(1) in 98% yield (>99% e.e.<sup>12</sup>) and acetate (2) in 100% yield, which on methanolysis gave (-)-(1) in 90% yield (>99% e.e.<sup>12</sup>).

As such, this route provides a short, efficient preparative scale route to both (+) and (-)-(1) in high yield and with high optical purity. Preliminary studies suggest that the Lipase PS30 on Celite can easily be recovered and reused with minimal loss of activity or resolving power.

## Typical Experimental

Kinetic Acetylation: A suspension of racemic (1) (10.00 g, 56.7 mmol), vinyl acetate (52.3 mL, 567 mmol) and Lipase PS30 on Celite (5.67 g) in *t*-butyl methyl ether (250 mL) was stirred at room temperature. After 2 days when the reaction was judged to be complete by chiral HPLC, the lipase was removed by vacuum filtration, washed with ether, and the volatile organics removed *in vacuo* to give a yellow oil. Column chromatography<sup>15</sup> provided 6.25 g of acetate (2) as a yellow oil (100%, Rf = 0.41, 5 1 hexanes : ethyl acetate) and 4.89 g of the unreacted alcohol (+)-(1) as white crystals (98%, mp 64-65 °C, <sup>14</sup> Rf = 0.18, >99% e.e.<sup>12</sup>)

Methanolysis: A suspension of acetate (2) (6.17 g, 28.3 mmol) and K<sub>2</sub>CO<sub>3</sub> (11.72 g, 84.8 mmol) in methanol (124 mL) was stirred at room temperature for 23 hours. After removing the solvent *in vacuo*, the residue was taken up into water (150 mL) and extracted with ethyl acetate (2 x 75 mL). After washing with brine (100 mL) and drying over MgSO<sub>4</sub>, the solvent was removed *in vacuo* to give 4.50 g of (-)-(1) as a white crystalline solid (90%, mp 64-65 °C,<sup>14</sup> >99% e.e.<sup>12</sup>)

## Acknowledgments

We thank Prof. Ogasawara for helpful discussions about the enzyme reaction and the Natural Sciences and Engineering Research Council of Canada and The University of Calgary for financial support.

## **References** and Notes

- 1. For a review see Whitesell, J.K. Chem. Rev. 1992, 92, 953.
- 2. Corey, E.J.; Ensley, H.E. J. Am. Chem. Soc. 1975, 97, 6908.
- 3. Whitesell, J.K.; Chen, H.H.; Lawerence, R.M. J. Org. Chem. 1985, 50, 4664.
- 4. Brown, H.C.; Prasad, J.V.N.V.; Gupta, A.K.; Bakshi, R.K. J. Org. Chem. 1987, 52, 310.
- 5 Brandes, B.J.; Jacobsen, E.N. J. Org. Chem. 1994, 59, 4378.
- 6. King, S.B., Sharpless, K.B. Tetrahedron Lett. 1994, 35, 5611.
- (a) Verbit, L.; Price, H.C. J. Am. Chem. Soc. 1972, 94, 5143. (b) Hawkins, J.M.; Loren, S.; Nambu, M. J. Am. Chem. Soc. 1994, 116, 1657.
- (a) Laumen, K.; Breitgoff, D.; Seemayer, R.; Schneider, M.P. J. Chem. Soc., Chem. Commun. 1989, 148.
  (b) Basavaiah, D.; Rao, D.P. Tetrahedron: Asymm. 1994, 5, 223. (c) Whitesell, J.K.; Lawrence, R.M. Chimia, 1986, 40, 318.
- 9. Schwartz, A.; Madan, P.; Whitesell, J.K.; Lawerence, R.M. Org. Synth. 1990, 69, 1.
- 10. Takahashi, M.; Ogasawara K. Tetrahedron: Asymm. 1995, 6, 1617.
- 11. Lipase PS30 on Celite from Amano Enzyme USA Co. Ltd., Lombard, Illinois.
- 12. Chiral HPLC was performed on a 25cm Chiralcel® OJ column, 98:2 hexane : isopropyl alcohol, 0.8 mL/min., retention times /min. acetate (2) 7.1, (+)-(1) 17.7, (-)-(1) 18.8,  $\lambda = 254$  nm. E.e. was determined by chiral HPLC.
- 13. To date we have not attempted this reaction on more than  $10g \text{ of } (\pm)-(1)$ .
- 14. All compounds were in agreement with known literature values.<sup>9</sup>
- 15. A solvent gradient was used, starting with hexanes, then 20:1 to 5:1 hexanes : ethyl acetate until the alcohol eluted.

(Received in USA 11 September 1996)