SEMISYNTHETIC CEPHALOSPORINES. SYNTHESIS OF SOME SUBSTITUTED TETRAZOLYL ACETIC AND PROPIONIC ACIDS

Ľubomír Janda^{*a*}, Zdeno Votický^{*b*}, Jozefína Jakubcová^{*a*}, Jan Světlík^{*a*}, Jaroslava Grimová^{*c*} and Eva Maturová^{*c*}

^a Drug Research Institute, Modra, 811 04 Bratislava,

^b Institute of Chemistry,

Slovak Academy of Sciences, 842 38 Bratislava, and

^c Research Institute for Pharmacy and Biochemistry, 130 60 Prague

Received July 20th, 1983

The N-alkylation of 5-[5-(substituted phenyl)-2-furyl]-1H-1-tetrazoles with ethyl bromoacetate or ethyl 3-bromopropionate afforded a mixture of 5-substituted ethyl 1- and 2-tetrazoyl acetates or propionates, which were separated and hydrolyzed to the corresponding 1- and 2-acetic or propionic acids, and used as intermediates for the synthesis of semisynthetic cephalosporine antibiotics. The prepared tetrazolyl acetic acids exhibited antiinflammatory activity.

The 5-[5-(substituted phenyl)-2-furyl]-1-tetrazolyl acetic acids VIa - VIi, 5-[5-(substituted phenyl)-2-furyl]-2-tetrazolylacetic acids IXa - IXi and 3-{5-[5-(3-chlorophenyl)-2-furyl]-1- and -2-tetrazolyl}propionic acids VIIIa and XIa, prepared by hydrolysis of the corresponding esters IIa - IIi, IVa - IVi, IIIa, and Va, were used for acylation of 7-aminocephalosporanic acid aiming to get new semisynthetic antibiotics modified in position $C_{(7)}$ of the cepheme backbone. The afore-mentioned esters were synthesized by N-alkylation of 5-[5-(substituted phenyl)-2-furyl]-1H-1-tetrazoles^{1,2} I with ethyl bromoacetate or 3-bromopropionate and chromatographic separation of position isomers formed (Scheme 1). Tetrazoles I were obtained from 5-(substituted phenyl)-2-furaldehydes³ via 5-(substituted phenyl)-2-furonitriles¹⁻³.

The N-alkylation of 5-substituted 1*H*-1-tetrazoles has already been described⁴⁻⁸. The alkylation proceeds in relation to the both character of the substituent at $C_{(5)}$ of the tetrazole ring, and the reaction medium. Thus, 5-phenyl derivative is alkylated in ethanol exclusively into position $N_{(2)}$ (ref.⁸), whilst the $C_{(5)}$ -thienyl, furyl, or alkyl derivatives afford in the same solvent a mixture of 1- and 2-isomers in various ratio^{5,7}; in acetone, one gets a mixture of 1- and 2-isomers regardless the character of the substituent at $C_{(5)}$ (ref.^{5,7}). In general, a replacement of an aromatic substituent at $C_{(5)}$ of the tetrazole ring for aliphatic one lowered the representation of 2-isomer⁷ in the mixture. As evident, the ratio of the isomers formed is strongly influenced

by inductive effects of substituents at the carbon atom of the tetrazole ring; electronaccepting properties of the substituent preferentially orient the N-alkylation to $N_{(2)}$ atom⁹⁻¹¹. The alkylation course of tetrazoles *I* is in accordance with these findings. Alkylation of 5-[5-(substituted phenyl)-2-furyl]-1*H*-1-tetrazoles *I* afforded a mixture of esters in an approximately 1 : 0.75 ratio in favour of the 1-isomer; were the benzene

a: R = 4-Cl-, *b*: R = 3-Cl-, *c*: R = 2-Cl-, *d*: R = 4-Br-, *e*: R = 3-CH₃-, *f*: R = 4-CH₃O*g*: R = 2-CH₃O-, *h*: R = 2-NO₂-, *i*: R = H-;

SCHEME 1

ring substituted by a nitro group in position 2, the alkylation product was a mixture of isomers in roughly the same ratio, but with the 2-isomer as a major product. The required tetrazolylacetic and propionic acids were in principle prepared according to⁷, describing an alkaline hydrolysis of ethyl 5-(2-furyl)-1- and 2-tetrazolyl acetates in methanol at an ambient temperature. Since the ethyl esters of substituted phenylfuryl-1- and 2-tetrazolyl acetic acids *II* and *IV* are methanol insoluble at room temperature, they were hydrolyzed under reflux with an excess of 3M-KOH. This modification proved disadvantageous, because potassium salts began to precipitate during hydrolysis and therefore, 50%-ethanol was used. The potassium salts are well soluble in this solvent down to approximately 60°C, and consequently, the corresponding acids must be liberated above this temperature. Yield of potassium salts, which can be isolated before acidification by filtration and washing with 75%-ethanol, depended on their solubility and varied within 50 to 70%. The yield of acids without

preceding isolation was virtually quantitative; crystallization from ethanol consumed about 10% of the yield.

Melting points of compounds substituted at $N_{(1)}$ of the tetrazole ring were higher than those of the corresponding $N_{(2)}$ isomers. This property has been preserved even with esters, acids and their potassium salts. This general finding was consistent with that of Norris⁹ and Raap¹², but, nevertheless inconsistent with that of Sorensen and Klitgaard⁷. Of all pairs of isomers presented in this paper only ethyl-5[5-(2--methoxyphenyl)-2-furyl -2-tetrazolyl acetate (*IVg*) melted by 4°C higher than the corresponding 1-isomeric ester *IIg*. This anomaly, however, disappeared with the corresponding acid, and, in accordance with the other pairs of isomers, the -1-tetrazolyl acetic acid *VIg* had a higher melting point than the -2-tetrazolyl acetic acid *IXg*. The melting point differences between the respective isomeric pairs of esters, acids and salts were found to be 10 to 70°C.

The IR spectra of these ethyl esters, acids and their salts were characteristic of absorption bands of a medium strong to strong intensity in the 1 280 to 1 266 $\rm cm^{-1}$ and 1.036 - 1.019 cm⁻¹ ranges, associated with the asymmetric and symmetric stretching vibrations of furan ring^{13,14}. Moreover, all spectra had a narrow band of weaker intensity at 902-871 cm⁻¹ belonging to out-of-plane bending vibrations of C—H bonds of furan^{15,16}. Further absorption bands due to stretching vibrations of the tetrazole ring and $v(C=C)_{arom}$ appeared at 1 624-1 464⁻¹. A comparison of IR spectra with those of model substances (ethyl 1H-1-tetrazolyl acetate¹⁷, ethyl 5-(2-furyl)-1-tetrazolyl acetate and ethyl 5-(2-furyl)-2-tetrazolyl acetate⁷) made it possible to ascribe unambiguously the following bands: those at 1624-1600 cm^{-1} to stretching vibrations of tetrazole, those at lower wavelengths between $1598-1579 \text{ cm}^{-1}$ and $1489-1464 \text{ cm}^{-1}$ to $v(C=C)_{arom}$. Absorptions at about 1 334 cm⁻¹ reflected stretching vibrations of the tetrazole ring¹⁸. A medium strong absorption band at $1 \, 116 - 1 \, 092 \, \mathrm{cm}^{-1}$ characterized skeletal vibrations of tetra $zole^{18,19}$. Dominating two absorption bands in the 1 754-1 734 cm⁻¹ and 1 246 to 1 208 cm⁻¹ regions of compounds IIa-IIi and IVa-IVi were ascribed to stretching vibrations of the carbonyl group²⁰, and stretching vibrations of the ester group^{21,22}, respectively. Acids VIa-VIi and IXa-IXi revealed a slight wavelength decrease of the dominating carbonyl absorption band down to $1.743 - 1.716 \text{ cm}^{-1}$. The presence of carboxyl groups was backed by medium strong absorption bands of C-O stretching vibrations at 1455-1427 cm⁻¹, and by strong absorptions of in-plane bending vibrations of the C-O-H bond angle at 930 cm⁻¹ (ref.²³). The IR spectra were measured in KBr pellets and therefore the O-H streching vibrations²⁴ could not be mentioned. Vibrations of the carbonyl ion were observed with the spectra of potassium salts of the respective acids at 1620-1600 cm⁻¹, and at 1419 to $1\,383\,\mathrm{cm}^{-1}$, both being diagnostic of asymmetric and symmetric stretching vibrations of this ion²⁵.

The UV spectra of 1-substituted esters IIa-IIi showed a K-band at 311-324 nm,

TABLE I

Antiinflammatory effect of acids VIa-VIi and IXa-IXh

		Inflar	Inflammation inhibition, $\%$				
Compound	mg kg ⁻¹	Caolin. oedema	Carrageenin. oedema	Adjuv. oedema			
VIa	25	11	13	19			
	100	21	3	23			
VIb	25	4	0	37 a			
	50		1 ^b	23 ^a			
	100	0	11 ^b	31 ^a			
VIc	25	26	0	19			
	100	2	14	22			
VId	25	21	0	18			
	100	9	0	10			
Vle	25	19	0	0			
	100	0	8	0			
VIf	25	2 ^b	0	56			
	100	18 ^a	15 ^b	7 ⁶			
VIg	25	19	8	4			
	100	16	6	21			
VIh	25	12	0	17			
	100	0	6	13			
VIi	25	15 ^b	13 ^b	28 ^{<i>a</i>}			
	50	—	22 ^b	11 ^b			
	100	6 ^b	19 ^b	36 ^a			
IXa	25	28 ^{<i>a</i>}	0	31 ^a			
	100	7	0	23 ^{<i>a</i>}			
IXb	25	0	11	25 ^a			
	100	19	16	33 ^a			
IXc	25	18	11	11			
	100	22	7	26			
IXd	25	12	0 ^b	28 ^{<i>a</i>}			
	50	_	4 ^b	36 ^a			
	100	2	14 ^b	36 ^a			
IXe	25	12	8	13			
	100	22	12	16			
IXf	25	13 ^b	0 ^b	19 ^a			
	100	17 ^b	0 ^b	25 ^a			
IXg	25	12	0 ^b	8 ^b			
	100	10	5 ^b	0 ^b			
IXh	25	0	10	18			
	100	0	9	10			
Ibuprofen	25	51 <i>ª</i>	50 ^a	39 ^a			
	100	49 ^{<i>a</i>}	50 ^a	41 ^{<i>a</i>}			

^a Statistically significant activity, ^b statistically insignificant activity. The unspecified results were not statistically evaluated for an insufficient number of animals in the group.

whilst the 2-isomers IVa - IVi have this band hypsochromically shifted to 308 to 319 nm. Both isomeric ethyl 5-[(2-nitrophenyl)-2-furyl]tetrazolyl acetates (11h and IVh) displayed a hypsochromic shift of this band to 292 nm. This phenomenon can be rationalized by a discontinuance of coplanarity and thereby also by discontinuation of conjugation of the molecule due to the steric hindrance of nitro group. A similar hypsochromic shift can also be observed in the spectra of 4-, 3- and 2-chloro derivatives, where the K-band is shifted by 2-3 nm between the respective position isomers at benzene ring in the given sequence. This shift display the 1- and the 2-isomeric series of these compounds. The bathochromic shift of the isomeric ethyl 5-[5-(methoxyphenyl)-2-furyl]tetrazolyl acetates (IIg and IVg) by 2-3 nm relative to the corresponding 4-methoxy derivatives IIf and IVf might be due to an influence of the methoxy group in position 4 of the phenyl ring. Of nine esters of the 1-isomeric series four derivatives were substituted in position 4 of the benzene ring. The greatest effect upon the K-band shift was seen with the methoxy groups (λ_{max} 323 nm), followed by bromo and chloro derivatives; the lowest effect showed the unsubstituted ethyl 5-(5-phenyl-2-furyl)-1-tetrazolyl acetate (λ_{max} 314 nm). Four esters of the 2-isomeric series of total nine compounds displayed the effect due to the substituent in position 4 of the benzene ring. Even this group of substances had the hypsochromic shift in the same sequence, the differences in the K-band position being 1-3 nm.

The ¹H NMR spectral data of ethyl esters IIa-IIi and IVa-IVi accord with the reported data for 1,5- and 2,5-substituted tetrazoles^{26,27}. Protons of the methylene group attached to tetrazole ring in position 1 resonate in higher field than those of the 2-isomer with the exception of both 5-[5-(3-chlorophenyl)-2-furyl]tetrazolyl

 TABLE II

 Acute oral toxicity of acids VIa- Vi and IXa- IXh

Compound	Mortality ^a %	Compound	Mortality ^a , %	
VIa	0	IXa	20	
VIb	10	IXb	20	
VIc	10	IXc	10	
VId	20	IXd	0	
Vle	10	IXe	0	
VIf	· 0	IXf	0	
Vlg	0	IXg	30	
VIh	0	IXh	0	
VIi	0	Ibuprofen	20	

^a Group of ten animals.

acetates IIb and IVb. A like trend was preserved by the ethyl group of ester function (Table III). Another characteristic feature revealed signals of furan protons; the H_3 one was always downfield shifted due to ring anisotropy of tetrazole ring. The difference between chemical shift values of the isomeric pair is very small ($\Delta \delta = 0.02$ to 0.05 ppm for --CH₂--N) and consequently, insufficient for a general distinction in comparison with compounds IIj and IVj (Scheme 2), where $\Delta \delta = 0.14$ ppm (ref.⁷). Correctness of the signal assignment to the particular isomers was verified by ¹H NMR spectral data of six 1-isomeric esters IIa, IIb, IIc, IId, IIf, and IIi prepared by an unequivoval synthesis from the corresponding imidoyl chloride and azide ion²⁸. Reliable and general information on the assignment of position

 TABLE III

 Ethyl 5-[5-(substituted phenyl)-2-furyl]-1-tetrazolyl acetates IIa-IIi

Compound	Formula	Calculated/Found			M.p.,°C	λ_{\max} , nm	<i>R</i> .,
R	(<i>M</i> _r)	% C	% Н	% N	(yield, %)	(log ε)	T.F
<i>IIa</i>	C ₁₅ H ₁₃ ClN ₄ O ₃ ^{<i>a</i>}	54·14	3·93	16·83	166—167	316 (4·55)	0.35
4-Cl	(332·7)	54·26	3·93	16·80	(52)	332 sh (4·34)	
<i>IIb</i>	$C_{15}H_{13}CIN_4O_3^{\ b}$	54∙14	3·93	16∙83	140—141	313 (4·50)	0.15
3-Cl	(332.7)	53∙98	3·97	16∙85	(50)	328 sh (4·30)	
<i>IIc</i>	C ₁₅ H ₁₃ ClN ₄ O ₃ ^c	54∙14	3∙93	16∙83	128-129	311 (4·36)	0.18
2-Cl	(332·7)	54∙17	4∙01	16∙85	(50)	327 sh (4·11)	
<i>IId</i>	$C_{15}H_{13}BrN_4O_2^{\ d}$	47∙76	3·47	14·85	170-172	318 (4·52)	0∙26
4-Br	(377.2)	47∙82	3·40	14·80	(51)	333 sh (4·33)	
IIe	$C_{16}H_{16}N_4O_3$	61·53	5·16	17·93	132—133	313 (4·48)	0.10
3-CH ₃	(312·3)	61·30	5·12	17·58	(50)	328 sh (4·20)	
<i>IIf</i>	$C_{16}H_{16}N_4O_4$	58∙53	4∙91	17·06	143—145	323 (4·42)	0.22
4-CH ₃ O	(328·3)	58∙20	5∙02	17·12	(52)	338 sh (4·28)	
<i>IIg</i>	C ₁₆ H ₁₆ N ₄ O ₄	58∙53	4∙91	17∙06	105—107	324 (4·38)	0.25
2-CH ₃ O	(328·3)	58∙43	4∙87	16∙98	(47)	340 sh (4·25)	
IIh 2-NO ₂	$C_{15}H_{13}N_5O_5$ (343·3)	52·48 52·46	3∙81 3∙78	20·40 20·61	113—114 (40)	292 (4·26)	0.04
<i>IIi</i>	C ₁₅ H ₁₄ N ₄ O ₃	60∙39	4∙73	18∙78	128—129	314 (4·43)	0.30
H	(298·3)	60∙54	4∙61	18∙82	(52)	327 sh (4·22)	

^{*a*} Calculated: 10.65% Cl, found: 10.78% 31; ^{*b*} calculated: 10.65% Cl, found: 10.70% Cl; ^{*c*} calculated 10.65% Cl, found: 10.78% Cl; ^{*d*} calculated: 21.18% Br, found: 21.04% Br.

isomers of esters IIa - IIi and IVa - IVi was adduced from the ¹³C NMR data reported separately²⁹.

SCHEME 2

 TABLE IV

 Ethyl 5-[5-(substituted phenyl)-2-furyl]-2-tetrazolyl acetates IVa-IVi

Compound	Formula	Calcu	lated/F	Found	M.p.,°C	λ_{\max} , nm	n
R	(<i>M</i> _r)	% C	% Н	% N	(yield, %)	(log ε)	ĸ _F
IVa	C ₁₅ H ₁₃ ClN ₄ O ₃ ^{<i>a</i>}	54·14	3·93	16·83	99—101	312 (4·54)	0.72
4-Cl	(332·7)	54·38	3·84	16·93	(37)	328 sh (4·34)	
<i>IVb</i>	$C_{15}H_{13}CIN_4O_3^{\ b}$	54∙14	3·93	16·83	126—127	310 (4·23)	0.30
3-Cl	(332.7)	54∙22	3·81	16·88	(41)	324 sh (4·23)	
IVc	C ₁₅ H ₁₃ ClN ₄ O ₃ ^c	54·14	3·93	16∙83	88-89	308 (4·34)	0.38
2-Cl	(332·7)	54·24	3·91	16∙89	(42)	323 sh (4·11)	
<i>IVd</i>	$C_{15}H_{13}BrN_4O_3^{d}$	47∙76	3∙47	14·85	105—106	314 (4·51)	0.80
4-Br	(377.2)	47•81	3∙54	14·77	(39)	329 sh (4·32)	
<i>IVe</i>	C ₁₆ H ₁₆ N ₄ O ₃	61·53	5·16	17·93	96—97	309 (4·42)	0.26
3-CH ₃	(312·3)	61·49	5·20	17·94	(32)	324 sh (4·20)	
<i>IVf</i>	C ₁₆ H ₁₆ N ₄ O ₄	58∙53	4∙91	17∙06	90-92	317 (4·44)	0.38
4-CH ₃ O	(328·3)	58∙50	5∙03	17∙10	(38)	333 sh (4·24)	
<i>IVg</i>	C ₁₆ H ₁₆ N ₄ O ₄	58∙53	4∙91	17∙06	109—110	319 (4·43)	0.45
2-CH ₃ O	(328·3)	58∙51	4∙98	17∙10	(40)	335 sh (4·31)	
IVh 2-NO ₂	C ₁₅ H ₁₃ N ₅ O ₅ (343·3)	52·48 52·44	3·81 3·90	20·40 20·46	100—101 (52)	292 (4·27)	0.10
<i>IVi</i>	C ₁₅ H ₁₄ N ₄ O ₃	60∙39	4∙73	18·78	84—86	308 (4·13)	0.60
H	(298·3)	60∙42	4∙60	18·64	(39)	324 sh (3·90)	

^{*a*} Calculated: 10.65% Cl, found: 10.72% Cl; ^{*b*} calculated: 10.65% Cl, found: 10.69% Cl; ^{*c*} calculated: 10.65% Cl, found: 10.66% Cl; ^{*d*} calculated: 21.18% Br, found: 21.11% Br.

Com- pound	CH ₃ (ester)	CH ₂ (ester)	CH ₂ —N	H _{arom}	Other
IIa	1.12	4.15	5-91	7·53, 7·61, 7·77, 7·86 (AA'BB', 4 H, C ₆ H ₄) 7·35 (d, H-4), 7·55 (d, H-3)	
IVa	1.23	4.22	5.93	7·47, 7·56, 7·78, 7·86 (AA'BB', 4 H, C ₆ H ₄) 7·25 (d, H-4), 7·36 (d, H-3)	
IIb	1.14	4.17	5.93	$7.41 - 7.85 (m, 6 \mathrm{H}, \mathrm{C_6H_4} + \mathrm{H-4})$	_
IVb	1.22	4.22	5.90	$7.28 - 7.80 \text{ (m, 6 H, C_6H_4 + H-3 + H-4)}$	_
IIc	1.07	4.12	5.90	$7.37 - 7.89$ (m, 6 H, $C_6H_4 + H-3 + H-4$)	_
IVc	1.23	4.22	5.94	$7 \cdot 29 - 7 \cdot 96 \text{ (m, 6 H, C}_{6}\text{H}_{4} + \text{H-3} + \text{H-4})$	
IId	1.12	4.15	5.90	7·73 (s, eclipsed AA'BB', 4 H, C ₆ H ₄) 7·36 (d, H-4), 7·54 (d, H-3)	<u> </u>
IVd	1.26	4.26	5.95	7·63, 7·72, 7·76, 7·86 (AA'BB', 4 H, C ₆ H ₄) 7·28 (d, H-4), 7·39 (d, H-3)	
He	1.12	4.16	5.90	$7.17 - 7.63 (m, 4 H, C_6H_4)$ 7.27 (d, H-4), 7.54 (d, H-3)	2·38 (CH ₃ —)
IVe	1.23	4.22	5.92	$7.08 - 7.64 (m, 4 H, C_6H_4)$ 7.19 (d, H-4), 7.35 (d, H-3)	2·37 (CH ₃)
llf	1.13	4.16	5.88	7·02, 7·11, 7·70, 7·78 (AA'BB', 4 H, C ₆ H ₄) 7·14 (d, H-4), 7·50 (d, H-3)	3·82 (CH ₃ O)
IVf	1.23	4 ·22	5-91	6·99, 7·08, 7·71, 7·79 (AA'BB', 4 H, C ₆ H ₄) 7·04 (d, H-4), 7·32 (d, H-3)	3·80 (CH ₃ O—)
IIg	1.13	4.15	5.91	$7.18 - 7.82 \text{ (m, 6 H, C_6H_4 + H-3 + H-4)}$	3·96 (CH ₃ ⊕—)
IVg	1.25	4.25	5.95	7·13–7·93 (m, 6 H, C_6H_4 + H-3 + H-4	3·97 (CH ₃ O)
IIh	1.06	4.12	5.90	7·74—8·07 (m, 4 H, C ₆ H ₄) 7·20 (d, H-4), 7·58 (d, H-3)	 .
I Vh	1.22	4 ·22	5.93	$7.58 - 8.03 \text{ (m, 4 H, C}_6\text{H}_4\text{)}$ 7.14 (d, H-4), 7.40 (d, H-3)	
Ili	1.13	4·15	5.90	7·38—7·89 (m, 5 H, C ₆ H ₅) 7·30 (d, H-4), 7·54 (d, H-3)	
IVi	1.27	4·2 6	5.96	7·40—7·91 (m, 5 H, C ₆ H ₅) 7·24 (d, H-4), 7·39 (d, H-3)	 .
IIj	1.17	4.19	5.75	6·80 (dd, H-4), 7·40 (d, H-3), 8·06 (dd, H-5)	

TABLE V

Proton chemical shift values of esters IIa-IIj, IVa-IVj, IIIa, and Va

Semisynthetic Cephalosporines

(Continued)

Com- pound	CH ₃ (ester)	CH ₂ (ester)	CH ₂ —N	H _{arom}	Other
IVj	1.22	4.21	5.89	6·73 (dd, H-4), 7·23 (d, H-3), 7·95 (dd, H-5)	
IIIa	1.18	4·10	5.00	$7.35 - 7.87 \text{ (m, 6 H, C_6H_4 + H-3 + H-4)}$	3·18 (CH ₂ CO ₂)
Va	1.05	4.05	5.01	$7.43 - 7.92 \text{ (m, 6 H, C_6H_4 + H-3 + H-4)}$	3·15 (CH ₂ CO ₂)

TABLE VI

Ethyl 3-{5-[5-(3-chlorophenyl)-2-furyl]-1- and -2-tetrazolyl}propionates IIIa and Va, and 3--{5-[5-(3-chlorophenyl)-2-furyl]-1- and -2-tetrazolyl}propionic acids VIIIa and XIa

Compound	Formula	Calculated/Found			M.p.,°C	λ_{\max}, nm	D
R	(<i>M</i> _r)	% C % H % N (yield, %)		(yield, %)	(log ε)	ĸ _F	
IIIa	C ₁₆ H ₁₅ ClN ₄ O ₃ ^a (346·7)	55·42 55·56	4·36 4·34	16·15 16·09	89-91 (52)	314 (4·27) 329 sh (4·23)	0.22
Va	C ₁₆ H ₁₅ ClN ₄ O ₃ ^b (346·7)	55∙42 55∙48	4∙36 4∙34	16·15 16·20	61-62 (40)	309 (4·17) 323 sh (4·10)	0.27
VIIIa	C ₁₄ H ₁₁ ClN ₄ O ₃ ^c (318·7)	52·76 52·72	3∙47 3∙50	17·57 17·56	247—248 (89)	_	
XIa	$C_{14}H_{11}CIN_4O_3^{\ d}$ (318.7)	52·76 52·77	3∙47 3∙50	17·57 17·58	235–237 (91)	_	

^{*a*} Calculated: 10·22% Cl, found: 10·23% Cl; ^{*b*} calculated: 10·22% Cl, found: 10·18% Cl; ^{*c*} calculated: 11·12% Cl, found: 11·10% Cl; ^{*d*} calculated: 11·12% Cl, found: 11·15% Cl.

The antiinflammatory effect of 5-substituted 2-furylacetic $acids^{30-32}$ and 5substituted 1- and 2-tetrazolyl acetic acids has already been reported⁸. Tetrazolyl acetic acids VIa - VIi and IXa - IXh were subjected to an orientative screening test on three experimental inflammation models (caoline³³, carrageenine³⁴ and adjuvant³⁵). A statistically significant antiinflammatory effect showed acids *VIb*, *VIi*, IXa, IXb, and IXd; it was, however, less pronounced when compared with that

Janda, Votický, Jakubcová, Světlík, Grimová, Maturová:

of the standard Ibuprofen and was manifested preponderantly on one model of the experimental inflammation (adjuvant oedema, Table I). As evident from results of the acute oral toxicity, heterocyclic acids VIa - VIi and IXa - IXh are at peroral administration very little toxic and the LD₅₀ value would exceed the dosis 1 g kg⁻¹ for all substances under investigation (Table II).

EXPERIMENTAL

Melting points were determined on a Kofler micro hot-stage, the IR spectra were measured with a Perkin-Elmer, model 457 apparatus in KBr at 2-3 mg per 20 mg concentration unless stated otherwise. The UV spectra were recorded with a Perkin-Elmer, model 340 spectrophotometer in the 220-350 nm range; concentration $4\cdot0-6\cdot0$. 10^{-4} moll⁻¹, dioxane. The ¹H NMR spectra of hexadeuteriodimethyl sulfoxide solutions containing tetramethylsilane as reference were run with a Jeol FX-100 instrument operating at 100 MHz. Position isomers were separated

Compound	Formula		Calculated/Found				
R	(<i>M</i> _r)	% C	% Н	% N	% Hal	(yield, %)	
VIa	C ₁₃ H ₀ ClN ₄ O ₃	51.24	2.97	18.38	11.63	231-232	
4-Cl	(304.7)	51.22	2.98	18.42	11.43	(94)	
VIb	C ₁₃ H ₉ ClN ₄ O ₃	51.24	2.97	18.38	11.63	249-250	
3-Cl	(304.7)	51.27	2.92	18.34	11.38	(94)	
VIc	C ₁₃ H ₉ ClN ₄ O ₃	51.24	2.97	18.38	11.63	221 - 222	
2-Cl	(304.7)	51.28	2.99	18.41	11.68	(93)	
VId	C ₁₃ H ₉ BrN ₄ O ₃	44 ·72	2.59	16.04	22.88	243-245	
	(349·2)	44 •76	2.62	16 ·09	22.78	(94)	
VIe	C ₁₄ H ₁₂ N ₄ O ₃	59·15	4·25	19.70		270-271	
3-CH ₃	(284-3)	59.14	4.31	19.78		(92)	
VIf	$C_{14}H_{12}N_4O_4$	56.00	4.02	18.65		223-224	
4-CH ₃ O	(300.3)	56.06	4.06	18.71		(94)	
VIg	$C_{14}H_{12}N_4O_4$	56.00	4.02	18.65	—	258-259	
2-CH ₃ O	(300.3)	56.02	4.12	18.70		(92)	
VIh	C ₁₃ H ₉ N ₅ O ₅	49.53	2.87	22.21		214-216	
2-NO ₂	(315.3)	49.54	2.90	22.30	_	(89)	
VIi	$C_{13}H_{10}N_4O_3$	57.77	3.72	20.73	_	227-229	
н	(270.2)	57.58	3.80	20.71		(91)	

 TABLE VII

 5-[5-(Substituted phenyl)-2-furyl]-1-tetrazoylacetic acids VIa-VIi

Collection Czechoslovak Chem. Commun. [Vol. 49] [1984]

1708

1709

with a preparative chromatograph Prep LC/System 500 A (Waters) using PrePAK-500/Silica columns, the mobile phase being dichloromethane at a 250 ml min⁻¹ flow rate and 1.5-2 MPa solvent pressure; retention time for 2-isomers was 4-5 min, for 1-isomers 6-20 min, injection 15-30 g depending on the separation capacity for the given pair and on the solubility of the mixture of esters. The process of separation was monitored by thin-layer chromatography, the R_F values refer to Silufol 254 sheets (Kavalier, Czechoslovakia); solvent system: dichloromethane.

The acute oral toxicity and the antiinflammatory effect was orientatively tested on mice (female, 19-22 g, Konárovice-breed S-strain) and on Wistar rats (150-170 g). The acute oral toxicity was estimated after a single administration of substances in gum arabic suspension in water (approx. 1/4 of the mass) to mice in a 1 g per 1 kg dose. The mortality of animals was determined in experimental groups of ten within 10 days from application. The antiinflammatory activity was tested by the scrrening method on rats after a peroral administration of substances to groups of four animals in 25, 50 and 100 mg kg⁻¹ doses in form of a suspension with gum arabic in water. Tests with substances showing an antiinflammatory effect were complemented in a group of six animals and the results were statistically evaluated.

Compound	Formula	Calculated/Found				M.p.,°C
R	(<i>M</i> _r)	% C	% Н	% N	% Hal	(yield, %)
IXa	C ₁₃ H ₉ ClN ₄ O ₃	51·24	2∙97	18·38	11.63	198—200
	(304·7)	51·22	3∙08	18·43	11.72	(94)
IXb	C ₁₃ H ₉ ClN ₄ O ₃	51·24	2·97	18·38	11·63	194—196
3-Cl	(304·7)	51·18	2·94	18·32	11·70	(96)
IXc	C ₁₃ H ₉ ClN ₄ O ₃	51·24	2∙97	18·38	11·63	221—224
2-Cl	(304·7)	51·34	3∙06	18·45	11·83	(92)
<i>IXd</i>	C ₁₃ H ₉ BrN ₄ O ₃	44∙72	2·59	16∙04	22·88	200—202
4-Br	(349·2)	44∙64	2·51	16∙14	22·68	(93)
<i>IXe</i>	$C_{14}H_{12}N_4O_3$	59·15	4·25	19·70 [•]		165—167
3-CH ₃	(284·3)	59·06	4·30	19·81		(90)
<i>IXf</i>	C ₁₄ H ₁₂ N ₄ O ₄	56·00	4·02	18·65		180—182
4-CH ₃ O	(300·3)	56·08	4·10	18·64		(90)
<i>IXg</i>	$C_{14}H_{12}N_4O_4$	56∙00	4·02	18·65		220-222
2-CH ₃ O)	(300.3)	56∙02	3·98	18·70		(88)
IXh	C ₁₃ H ₉ N ₅ O ₅	49·53	2·87	22·21		191—193
2-NO ₂	(315·2)	49·48	2·98	22·34		(87)
IXi	$C_{13}H_{10}N_4O_3$	57·77	3·71	20·73		184—186
H	(270.2)	57·61	3·76	20·71		(92)

TABLE VIII						
5-[5-(Substituted	phenyl)-2-fur	yl]-2-tetrazo	ylacetic	acids	IXa-I	lXi

The 5-[5-(substituted phenyl)-2-furyl]-1*H*-1-tetrazoles (*I*) were prepared according to¹ as follows: 5-[5-(3-methylphenyl)-2-furyl]-1*H*-1-tetrazole (*Ia*) from 5-(3-methylphenyl)-2-furonitrile in a 81% yield, m.p. 236–237°C (ethanol). For $C_{12}H_{10}N_4O$ (226·2) calculated: 63·71% C, 4·46% H, 24·76% N; found: 63·86% C, 4·84% H, 24·72% N. UV spectrum, λ_{max} , nm (log ε); 308 (4·44), 325 sh (4·20). 5-[5-(2-methoxyphenyl)-2-furyl]-1*H*-1-tetrazole (*Ib*) from 5-(2-methoxyphenyl)-2-furonitrile, 79% yield, m.p. 190–192°C (ethanol). For $C_{12}H_{10}N_4O_2$ (242·2) calculated: 63·50% C, 4·16% H, 23·15% N; found: 59·32% C, 4·18% H, 23·20% N. UV spectrum, λ_{max} , nm (log ε); 322 (4·40), 336 sh (4·28).

Ethyl 5-[5-(Substituted phenyl)-2-furyl]-1- and -2-Tetrazolyl Acetates IIa-IIi and IVa-IVi

5-[5-(Substituted phenyl)-2-furyl]-1*H*-1-tetrazole (0·1 mol) was added to a stirred solution of sodium metal (2·3 g, 0·1 mol) in ethanol (350 ml) at room temperature. The solution was heated to the boiling temperature, and after 5 min ethyl bromoacetate (11·13 ml, 0·1 mol) was added and heating was continued for 16 h. A mixture of esters, crystallizing from the cooled solution was filtered off and washed with ethanol. The individual isomers were obtained by separation on a preparative chromatograph. The characteristic data of the title compounds are listed in Tables III and IV, their ¹H NMR data in Table V.

TABLE IX

Potassium 5-[5-(substituted	phenyl)-2-furyl]-1-tetrazolyl acetates	VIIa-VIIA
-----------------------------	--	-----------

Compound R	Formula (M _r)	Calculated/Found				M.p.,°C
		% C	% Н	% N	% Hal	(yield, %)
VIIa	C12H2ClKN4O2	45.55	2.35	16.34	10.34	338 340
4-Cl	(342.8)	45.48	2.30	16.41	10.46	(54)
VIIb	C ₁₃ H ₈ ClKN ₄ O ₃	45.55	2.35	16.34	10.34	335-338
3-Cl	(342.8)	45.54	2.37	16.44	10.42	(56)
VIIc	C ₁₃ H ₈ ClKN ₄ O ₃	45.55	2.35	16.34	10.34	328-330
2-Cl	(342.8)	45.58	2.40	16.43	10-29	(55)
VIId	$C_{13}H_8BrKN_4O_3$	40.32	2.08	14.46	20.63	336-338
4-Br	(387.3)	40.24	2.00	14.48	20.69	(61)
VIIe	$C_{14}H_{11}KN_4O_3$	52.16	3.43	17.37		332-333
3-CH ₃	(322.4)	52.06	3.61	17•40		(70)
VIIf	C ₁₄ H ₁₁ KN ₄ O ₄	49.69	3.27	16.55	_	326-328
4-CH ₃ O	(338.4)	49.60	3.32	16.56		(60)
VIIg	C13H8KN505	44 ·19	2.28	19.82		290-292
2-NO ₂	(353.4)	4 4·21	2.30	19.88		(66)
VIIh	C ₁₃ H ₉ KN ₄ O ₃	50.63	2.94	18.17		331-334
н	(308.4)	50.66	3.01	18.21		(58)

Ethyl 3-{5- 5-(3-chlorophenyl)-2-furyl]-1- and -2-tetrazolyl}propionates (IIIa and Va) were prepared as IIa-IIi and IVa-IVi with the exception that ethyl 3-bromopropionate was used instead of ethyl bromoacetate. Characteristic data of these compounds are presented in Table VI, their ¹H NMR data in Table V.

5-[5-(Substituted phenyl)-2-furyl]-1-tetrazolylacetic Acids VIa-VIi

Ethanol (50 ml) and KOH (2·14 g, 37.5 mmol) in water (50 ml) was poured into ethyl 5-[5-(substituted phenyl)-2-furyl]-1-tetrazolyl acetate, the mixture was refluxed for 1 h, filtered and acidified with 15% hydrochloric acid while being hot. The separated acid was filtered off after cooling, washed with water and ethanol, and dried. Characteristic data of acids VIa - VIi are in Table VII, those of potassium salts VIIa - VIIh in Table IX.

5-[5-(Substituted phenyl)-2-furyl]-2-tetrazolylacetic Acids IXa-IXi

A 3M-methanolic KOH (10 ml) was poured into a solution of ethyl 5-[5-(substituted phenyl)-2-furyl] -2-tetrazolyl acetate (25 mmol) in hot methanol (100 ml). The separated potassium salt of the corresponding acid was dissolved by addition of water (50 ml) and heated for 1 h. The mixture was filtered off, the filtrate was acidified with 15% hydrochloric acid and the separated acid was filtered off and worked up as with compounds VI. Characteristic data of acids IXa-IXiare given Table VIII, those of potassium salts Xa-Xg in Table X.

Compound R	Formula (M _r)	Calculated/Found				M.p.,°C
		% C	% H	% N	% Hal	(yield, %)
Xa	C ₁₃ H ₈ ClKN ₄ O ₃	45.55	2.35	16.34	10.34	317-319
4-Cl	(342.8)	45.51	2.38	16.38	10.42	(48)
Xb	C ₁₃ H ₈ ClKN ₄ O ₃	45.55	2.35	16.34	10.34	310-312
3-Cl	(342.8)	45.50	2.38	16.32	10.26	(47)
Xc	C ₁₃ H ₈ ClKN ₄ O ₃	45.55	2.35	16.34	10.34	303 304
2-Cl	(342.8)	45.49	2.37	16 ·2 8	10.56	(50)
Xd	C ₁₃ H ₈ BrKN ₄ O ₃	40.32	2.08	14.46	20.63	319-321
4-Br	(387·3)	40.28	2.07	14.51	20.54	(54)
Xe	C ₁₄ H ₁₁ KN ₄ O ₃	52 ·16	3.43	17.37		295-297
3-CH ₃	(322.4)	52.21	3.44	17.41		(65)
Xf	C ₁₄ H ₁₁ KN ₄ O ₄	49.69	3.27	16.55		302-303
4-CH ₃ O	(338·4)	49.74	3.31	16.62		(48)
Xg	C ₁₃ H ₈ KN ₅ O ₅	44.19	2.28	19.82		275 - 277
2-NO ₂	(353.4)	44 ·10	2.26	19.90		(57)

 TABLE X

 Potassium 5-[5-(substituted phenyl)-2-furyl]-2-tetrazolyl acetates Xa-Xg

3-{5-[5-(3-Chlorophenyl)-2-furyl]-1- and -2-tetrazolyl propionic} acids VIIIa and XIa were obtained by an alkaline hydrolysis of the corresponding esters IIIa and Va according to procedures for acids VIa-VIi and IXa-IXi. Characteristic data of these compounds are listed in Table VI.

REFERENCES

- 1. Považanec F., Kováč J., Krutošíková A.: This Journal 41, 1692 (1976).
- 2. Považanec F., Kováč J.: Chem. Zvesti 33, 798 (1979).
- 3. Janda Ľ., Votický Z.: Chem. Zvesti, in press.
- 4. Henry R. A.: J. Amer. Chem. Soc. 73, 4470 (1951).
- 5. Raap R., Howard J.: Can. J. Chem. 47, 813 (1969).
- 6. Finnegan W. G., Henry R. A., Lofquist R.: J. Amer. Chem. Soc. 80, 3908 (1958).
- 7. Sorensen A. K., Klitgaard N. A.: Acta Chim. Scand. 26, 541 (1972).
- Buckler R. T., Hayao S., Lorenzetti O. J., Sancilio L. F., Hartzler H. E., Strycker W. G.: J. Med. Chem. 13, 725 (1970).
- 9. Norris W. P.: J. Org. Chem. 27, 3248 (1962).
- 10. Henry R. A., Rinnegan W. G.: J. Amer. Chem. Soc. 76, 923 (1954).
- 11. Butler R. N., Scott F. L.: J. Org. Chem. 31, 3182 (1966).
- 12. Raap R.: Can. J. Chem. 47, 3677 (1969).
- 13. Cross A. H. J., Watts T. H. E.: Chem. Ind. (London) 1958, 1161.
- 14. Katritzky A. R., Lagowski J. M.: J. Chem. Soc. 1959, 657.
- 15. Nakanishi K.: The Infrared Absorption Spectroscopy, Russian translation, p. 64. Mir, Moscow 1955.
- 16. Giller C. A., Berzin A. E.: Khim. Geterotsikl. Soedin. 1966, 487.
- 17. Takashi K., Yoshihisa S.: U.S. 3 767 667 (1973).
- 18. Rao C. N. R., Venkataraghavan R.: Can. J. Chem. 42, 43 (1964).
- 19. Roberts C. W., Maskaleris M. L.: J. Org. Chem. 24, 926 (1959).
- 20. Katritzky A. R., Lagowski J. M., Beard J. A.: Spectrochim. Acta 16, 964 (1960).
- 21. Jones R. N.: Can. J. Chem. 40, 321 (1962).
- 22. Nolin B., Jones R. N.: Can. J. Chem. 34, 1392 (1952).
- 23. González-Sánchez F.: Spectrochim. Acta 12, 17 (1958).
- Horák M., Papoušek D.: Infračervená spektra a struktura molekul, p. 603. Academia, Prague 1976.
- 25. Ito K., Bernstein H. J.: Can. J. Chem. 34, 170 (1956).
- 26. Markgraf J. H., Bachmann W. T., Hollis D. P.: J. Org. Chem. 30, 3472 (1965).
- 27. Butler R. N., Scott F. L.: J. Org. Chcm. 32, 1224 (1967).
- 28. Janda L., Votický Z., Světlík J., Grimová J., Maturová E.: This Journal 49, 1505 (1984).
- 29. Světlík J., Golier I., Janda Ľ.: This Journal, in press.
- 30. Kaltenbronn J. S., Rhee T. O.: J. Med. Chem. 11, 902 (1958).
- 31. Parke, Davis and Co.: Brit. 1 139 164; Chem. Abstr. 70, 77 769 (1969).
- 32. Kaltenbronn J. S.: U.S. 3 560 525; Chem. Abstr. 75, 5 679 (1971).
- 33. Hillebrecht N. P.: Arzneim.-Forsch. 9, 625 (1959).
- 34. Winter J.: Proc. Soc. Exp. Biol. Med. 111, 544 (1962).
- 35. Pearson C. M., Wood F. D.: Arthr. Rheum. 2, 440 (1959).

Translated by Z. Votický.