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Cholesterol-appended benzothiadiazoleetriphenylamine two-photon absorption dye was prepared and
its self-assembling nature was investigated. The dye gave viscous fluid organogels in aliphatic hydro-
carbon solutions such as cyclohexane, in which one-dimensional supramolecular aggregates are formed
through the van der Waals interactions among the cholesterol moieties and the intermolecular
hydrogen-bonding interactions among the carbamate spacer moieties. The supramolecular self-
assembling was confirmed by the line-broadening effect in the 1H NMR spectra, and by the bath-
ochromic shifts of the absorption and emission bands. The bathochromic shift of the absorption band
suggested that the benzothiadiazoleetriphenylamine moieties take a J-like aggregation mode. Under the
self-assembled conditions, the dye showed a negative exciton splitting pattern in the CD spectrum,
suggesting the one-dimensional stacking with a left-handed twisting mode. The two-photon absorption
nature in the parent benzothiadiazoleetriphenylamine chromophore is maintained in the self-assembled
system.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Supramolecular self-assembly composed of organic p-conju-
gatedmolecules has been ofmuch interest in view of their potential
application to material sciences [1e8]. Benzothiadiazole dyes and
their derivatives are attractive candidates of the organic p-conju-
gated molecules, because of their strongly electron-accepting na-
ture [9,10]. In addition, the dyes provide another character of strong
light-emitting ability both in solution and solid state [11,12]. On the
other hands, two-photon absorption dyes can be created by simple
strategy on the basis of a connection between donor and acceptor
moieties, by which the intramolecular charge-transfer character is
enhanced to generate two-photon absorption nature [13,14].
Recently, we have created benzothiadiazole-based two-photon
absorption dyes with light-emitting ability on the basis of a com-
bination of the electron-withdrawing benzothiadiazole core and
electron-donating triphenylamine moieties [15]. Then, the two-
photon absorption dyes were developed to functional systems
such as two-photon-excited red fluorescence emitting system [16],
: þ81 942 35 9400.
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two-photon-induced single oxygen sensitizing system [17], and
two-photon-triggered emitting OFFeON system [18]. In the appli-
cation to the functional two-photon absorption materials, an or-
dered arrangement of the two-photon absorption dyes is important
to enhance the functionalities as well as to generate a new func-
tionality. In this paper, we report the first finding of an arrangement
of the benzothiadiazoleetriphenylamine dye via supramolecular
self-assembling. The strategy is based on the introduction of the
four self-assembling cholesterol moieties [19,20], which are
appended to a benzothiadiazole core through hydrogen-bonding
carbamate moieties.
2. Experimental

2.1. General

All melting points are uncorrected. IR spectra were recorded on
a JASCO FT/IR-470 plus Fourier transform infrared spectrometer
and measured as KBr pellets. 1H NMR spectra were determined in
CDCl3, CD2Cl2, and cyclohexane-d12 with a JEOL JNM-AL 400 spec-
trometer. Residual solvent protons were used as internal standard
and chemical shifts (d) are given relative to tetramethylsilane
(TMS). The coupling constants (J) are reported in hertz (Hz).
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Scheme 1. Preparation of 4.
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Elemental analysis was performed at the Elemental Analytical
Center, Kyushu University. Fast atom bombardment mass spec-
trometry (FAB-MS) spectra were recorded with a JEOL JMS-70 mass
spectrometer withm-nitrobenzyl alcohol (NBA) as a matrix. Matrix
assisted laser desorption ionization time-of-flight mass spectrom-
etry (MALDI-TOF-MS) was performed on a BRUKER Auto FLEX
spectrometer using delayed extraction mode and with an acceler-
ation voltage of 20 keV. Samples were prepared from a solution of
dichloromethane using dithranol as the matrix.

Analytical TLC was carried out on silica gel coated on aluminum
foil (Merck 60 F254). Column chromatography was carried out on
Table 1
Organic solvents tested for gelation by 4.a

Solvent 20 �C (5 �C)

Hexane I
Cyclohexane S (G)
Methylcyclohexane S (pG)
Benzene S
Toluene S
Methanol I
Ethanol I
Dichloromethane S
Chloroform S
1,2-Dichloroethane S (R)
1,1,2,2-Tetrachloroethane S
Acetone I
Ethyl acetate R
Acetonitrile I
DMSO pG
1,4-Dioxane S (R)
1-Butanol R
2-Propanol R
NMP tpG

a [4] ¼ 10.0 mM; G ¼ gel, pG ¼ partial gel, tG ¼ turbid gel,
tpG ¼ turbid partial gel, R ¼ recrystallization, S ¼ solution,
I ¼ insoluble.
silica gel (WAKO C300). DMF was distilled from calcium hydride
under reduced pressure, and stored under an argon atmosphere.
1,1,2,2-Tetrachloroethane was distilled from calcium hydride under
an argon atmosphere just before use. THF was distilled from so-
dium and benzophenone under an argon atmosphere just before
use. Methanol was dried over 4A molecular sieves. Preparation of 1
[16] and 3 [21] was reported previously.

2.2. Spectroscopic measurement

UVevis spectra were measured on a JASCO V-570 spectropho-
tometer in 0.01 cmwidth quarts cell (1.0 mM), 0.1 cm cell (0.1 mM),
and 1.0 cm cell (0.01 mM). Fluorescence spectra were measured on
a HITACHI F-4500 fluorescence spectrophotometer. Film samples
for the measurements of UVevis and fluorescence spectroscopy
were prepared by drop casting and the subsequent spin-coating
(2000 rpm, 30 s) from cyclohexane solutions (100 mL) on quartz
cell (12.5�12.5� 45mm). CD spectraweremeasured on a JASCO J-
715 spectropolarimeter in 0.1 cm width quarts cell (1.0 mM).
Atomic force microscopy (AFM) images were obtained on an SII
SPA400 DFM (tappingmode). SI-DF20 type tips were used. Samples
were prepared by drop casting from 0.001 mM cyclohexane solu-
tion on freshly cleavedmica. Two-photon absorption cross-sections
were measured by using an open aperture Z-scan method with
femtosecond pulses from an optical parametric amplifier (Quan-
tronix TOPAS) excited by an 1 kHz repetition Ti:sapphire regener-
ative amplifier system (Quantronix Integra). The pulse width is
120 fs and the spatial profiles were characterized by knife-edge
method and can be a Gaussian profile [16]. The two-photon ab-
sorption cross-sections were estimated on the basis of AF-50
(45 GM) used as a two-photon absorption benchmark [22].

2.3. 4,7-Bis{4-[N,N-bis(4-formylphenyl)amino]phenyl}-2,1,3-benzothia
diazole (2)

To a solution of 1 (873 mg, 1.40 mmol) and dry DMF (4.34 mL,
56.0 mmol) in dry 1,1,2,2-tetrachloroethane (6 mL) was added
dropwise POCl3 (2.61 mL, 28.0 mmol) at 0 �C, and the mixture was
heated at 90 �C for 4 days. During the heating, a mixture of dry DMF
(1.30 mL, 16.8 mmol) and POCl3 (0.80 mL, 8.4 mmol) in dry tetra-
chloroethane (0.9 mL) was added three times after 1, 2, and 3 days.
The reaction mixture was poured into ice water, neutralized with
aqueous 1 N NaOH solution, and extracted with chloroform. The
combined organic layer was washed with brine, dried over anhy-
drous magnesium sulfate, and evaporated in vacuo to dryness. The
residue including tetrachloroethane was passed through a short
pad of silica eluting with chloroform and the filtrate was evapo-
rated in vacuo to dryness. The residue was purified by silica gel
column chromatography eluting with chloroform to give 2 in 46%
yield (473 mg, 0.64 mmol): Pale orange powder; mp 226e228 �C;
IR (KBr, cm�1) 3032, 1693 (nC¼O), 1588, 1505, 1480, 1321, 1283, 1215,
1163, 825; 1H NMR (CDCl3) d 7.23e7.38 (m, 12 H, ArH), 7.83 (d,
J¼ 8.6 Hz, 8 H, ArH), 7.85 (s, 2 H, ArH), 8.04 (d, J ¼ 8.6 Hz, 4 H, ArH),
9.93 (s, 4 H, CHO); FAB-MS (NBA, positive)m/z 734 (Mþ). Anal. Calcd
for C46H30N4O4S: C, 75.19; H, 4.12; N, 7.62; Found: C, 75.00; H, 4.03;
N, 7.65.

2.4. 4,7-Bis{4-[2-(3b-cholest-5-en-3-ylcarbamate-N-yl)ethylamino
methyl]phenyl}-2,1,3-benzothiadiazole (4)

Toa suspensionof2 (147mg, 0.20mmol) in dryTHF (4mL)anddry
methanol (4 mL) was added 3 (416 mg, 0.88 mmol) at room temper-
ature under an argon atmosphere, then the mixture was heated at
50 �C for 4 h. The imination reaction was monitored by the mea-
surement of 1H NMR (CDCl3), which indicated the disappearance of



Fig. 1. 1H NMR spectra of 4 in dichloromethane-d2 (top) and cyclohexane-d12 (bottom) at 1.0 mM.
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CHO proton signal (9.93 ppm) and the appearance of N¼CH proton
signal (8.26 ppm). Then the reaction mixture was cooled to 0 �C, so-
diumborohydride (38mg,1.0mmol)was added and themixturewas
stirred at room temperature for 13 h. The reaction mixture was
quenched by the addition of water. The formed precipitate was
collected by filtration, and washed with water, and methanol. The
crude product was purified by silica gel column chromatography
eluting with dichloromethane/methanol/NH4OH (190:9:1, v/v/v) to
give4 in 20% (105mg,0.041mmol): Red solid:mp175e176 �C, IR (KBr,
cm�1) 3420 (nNH), 3345 (nNH), 3031, 2937, 2903, 2867, 1718 (nC¼O),
1700 (nC¼O), 1600, 1508, 1478, 1320, 1267, 1136, 1031, 1015, 823; 1H
NMR (CDCl3) d 0.66, 1.00 (s, each 12 H, Me), 0.86 (d, J ¼ 6.6 Hz, 24 H,
Me), 0.91 (d, J ¼ 6.6 Hz, 12 H, Me), 0.94e1.63 (m, 88 H, CH and NH),
1.76e2.04 (m,20H),2.21e2.43(m,8H),2.81(t, J¼5.6Hz,8H,NHCH2),
3.26e3.36 (m, 8 H, CONHCH2), 3.76 (s, 8 H, ArCH2NH), 4.44e4.56 (m,
4 H, OCH), 5.00e5.10 (m, 4 H, NHCOO), 5.36 (d, J¼ 4.9 Hz, 4 H, CH¼C),
7.14 (d, J ¼ 8.3 Hz, 8 H, ArH), 7.19 (d, J ¼ 8.6 Hz, 4 H, ArH), 7.23 (d,
J ¼ 8.3 Hz, 8 H, ArH), 7.74 (s, 2 H, ArH), 7.88 (d, J ¼ 8.6 Hz, 4 H, ArH);
MALDI-TOF-MS (positive, dithranol) m/z 2559.80 (Mþ, calcd for
C166H238N12O8S 2559.83). Anal. Calcd for C166H238N12O8S$0.8CH2Cl2:C,
76.18; H, 9.18; N, 6.39: Found: C, 76.08; H, 9.24; N, 6.45.
3. Results and discussion

3.1. Synthesis

Cholesterol-appended benzothiadiazole dye 4 was prepared
from the condensation reaction between tetraformyl derivative 2
and cholesterol carbamate with terminal amino group 3 [21],
followed by treatment with sodium borohydride (Scheme 1). The
synthetic intermediate 2 was obtained from 1 [16] by treatment
with DMF/POCl3. The new compounds were characterized by
spectroscopic methods and elemental analysis.
3.2. Aggregation properties

The self-assembling of 4was checked easily by gelation aggregate
test (Table 1). In aromatic hydrocarbon solvents such as benzene and
toluene, and in chlorinated solvents such as dichloromethane and
chloroform, 4 dissolved as monomer. In contrast 4 formed viscous
fluid organogels at 10 mM in aliphatic hydrocarbon solvents such as
cyclohexane and methylcyclohexane, and in DMSO and NMP sol-
vents. In the organogels, the self-assembling of the 4 molecules
proceeds to form one-dimensional supramolecular aggregates
mainly through the van derWaals interactions among the cholesterol
moieties, as widely found in cholesterol-based organogels (see, the
Supporting Information, Fig. 1) [19]. In the 1H NMR spectrum, line-
broadening effect arising from the self-assembling was observed in
cyclohexane-d12 (1.0 mM) at 20 �C (Fig. 1). Such broadening was not
observed in dichloromethane-d2. Thus, we decided to study the self-
assembling nature in cyclohexane as an effective solvent and in
dichloromethane as ineffective one.

The aggregate can be visualized by atomic force microscopy
(AFM). The aggregated cyclohexane solution (0.001 mM) was cas-
ted on freshly cleavedmica. The AFM image indicates a hierarchical
tree-like structure with a height of ca. 15 nm (Fig. 2). The aggregate
seems to be created by the self-assembling of the 4 molecules and
the subsequent hierarchical self-organization.



Fig. 2. AFM image and the height profile of 4.
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Fig. 3. (a) UVevis spectra of 4 in dichloromethane and cyclohexane (1.0 mM), and in
film. (b) UVevis spectra of 4 in cyclohexane at 0.001, 0.01, 0.1, and 1.0 mM.
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3.3. UVevis absorption and fluorescence spectral properties

In the UVevis spectra of 1 and 4, the two absorption maxima
were observable around 310 nm and 460e470 nm. The former can
be assigned to pep* transition and the later to charge-transfer
(CT) transition arising from the donoreacceptor
triphenylamineebenzothiadiazole chromophore [16]. In 4, the CT
band (474 nm) in the cyclohexane solution is observed at longer
wavelength than that (466 nm) in the dichloromethane solution;
nevertheless, the polarity of cyclohexane is lower than that of
dichloromethane (Fig. 3a). On the other hand, such solvent-
dependent change was not observed in 1 without the choles-
terol moieties: the CT bands appeared at 455 nm both in cyclo-
hexane and dichloromethane [16]. The bathochromic shift in the
cyclohexane solution of 4 would be attributed to the self-
assembling of the 4 molecules, in which the benzothiadiazolee
triphenylamine moieties take a J-like aggregation mode [23]. The
CT band (472 nm) in the film aggregate state coincides with that
(474 nm) in the cyclohexane solution but not with that (466 nm)
in the dichloromethane solution (Fig. 3a).

The self-assembling in cyclohexane is facilitated with increasing
concentration (from 0.001 to 1.0 mM): the intensity of the longer
wavelength region of the CT band increased (Fig. 3b, and the
Supporting Information, Fig. S4). The concentration-dependent self-
assembling in 4 is reflected also in steady-state fluorescence spectra.
The emission band shifts bathochromically from 594 nm to 620 nm
with the increase of concentration (from 0.001 to 1.0 mM), according
to facilitated self-assembling (Fig. 4b). The emission band (620 nm) at
the high concentration of 1.0 mM is similar to that (621 nm) in the
film aggregate state (Fig. 4a). The bathochromic shift would be
attributed to a stabilization effect on the excited state in the self-
assembled aggregates [24]. In contrast, in dichloromethane, the CT
absorption band at 466 nm and the emission band at 648 nm in 4
changed scarcely depending on concentration (see, the Supporting
Information, Figs. S2 and S3).

3.4. CD spectral properties

Under the self-assembled conditions, the cyclohexane solution
of 4 is CD-active even at the lower concentration (w0.01 mM)
(Fig. 5, and the Supporting Information, Figs. S5). The CD spectrum
showed a negative exciton splitting with the first negative Cotton
effect at 507 nm and the second positive Cotton effect at 444 nm.
The intersection at 475 nm was in accordance with the CT ab-
sorption band at 474 nm. Probably, the negative exciton splitting
observed around the triphenylamineebenzothiadiazole chromo-
phore is due to the one-dimensional stacking of the 4 molecules
with a left-handed twisting mode [25], as widely found in
cholesterol-appended dyes [19]. In contrast, the strong Cotton ef-
fect around at 270e350 nm would include the chiroptical contri-
bution arising from macroscopic alignment of fibrous large
aggregates (see, the Supporting Information, Figs. S5 and S6) [26].

3.5. Infrared spectral properties

In addition to the van derWaals interactions among the cholesterol
moieties, the intermolecular hydrogen-bonding interactions among the
carbamatemoietiesworkmosteffectivelytostabilizetheself-assembled



Fig. 4. (a) Fluorescence spectra of 4 in dichloromethane and cyclohexane (1.0 mM),
and in film. (b) Fluorescence spectra of 4 in cyclohexane at 0.001, 0.01, 0.1, and 1.0 mM
(excited at 475 nm).
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Fig. 5. CD spectrum of 4 in cyclohexane at 1.0 mM (0.1 cm width cell).

Fig. 6. C¼O stretching vibration region in the IR spectra of 4 in dichloromethane and
cyclohexane (1.0 mM), and in KBr.
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aggregate structure. In the cyclohexane solution (1mM), the hydrogen-
bonded C¼O stretching band at 1700 cm�1 was observed in addition to
the non-hydrogen-bonded one at 1720 cm�1, as found in the KBr solid
state showing the C¼O bands at 1700 and 1718 cm�1. In contrast, only
the non-hydrogen-bonded C¼O stretching band at 1714 cm�1 was
detected in the dichloromethane solution (Fig. 6). Similar trends were
observed for the NH stretching bands. The hydrogen-bonded NH
stretching band was appeared around 3350 cm�1, whereas the non-
hydrogen-bonded one around 3450 cm�1.

3.6. Two-photon absorption spectral properties

The two-photon absorption cross-sections (d) were estimated
by using an open aperture Z-scan method with a femtosecond
Ti:sapphire laser source [16]. The cholesterol-appended dye 4 is
TPA-active both in the self-assembled and in the non-self-
assembled conditions (1.0 mM): the d values of 110 GM in cyclo-
hexane and 147 GM in dichloromethane at 800 nm. The results
indicate that two-photon absorption nature is maintained even in
the self-assembled systemwhere the benzothiadiazole two-photon
absorption chromophores are arranged with J-like aggregate mode.

4. Conclusions

In conclusion, we have demonstrated that benzothiadiazole
two-photon absorption dye is self-assembled to form an aggregate
by introducing the four cholesterol moieties. In the aggregate, the
benzothiadiazole moieties are arranged with J-like helical stacking
mode. The two-photon absorption nature in the parent
benzothiadiazoleetriphenylamine chromophore is maintained in
the self-assembled system. We believe that the present self-
assembled two-photon absorption system will be developed to
material sciences such as optical power limitation, micro-
fabrication, three-dimensional optical data storage.
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