December 1990 SYNTHESIS 1167

Synthesis of (E)-4-Oxo-5-hexenals and Their Acetal Derivatives

Shuji Kanemasa,*a Tatsuya Otsuka,b Kenji Doi,b Otohiko Tsuge,c Eiji Wadaa

^a Institute of Advanced Material Study, Kyushu University, Kasugakoen, Kasuga 816, Japan

b Department of Molecular Science and Technology, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasugakoen, Kasuga 816, Japan

^c Department of Industrial Chemistry, Kumamoto Institute of Technology, Ikeda, Kumamoto 860, Japan

An effective synthesis of (E)-4-oxo-5-hexenals 6 and the acetals 5 starting from ethyl 2-alkoxy-1-cyclopropanecarboxylates 1a-d is presented. The acid-induced ring opening of the cyclopropanecarboxylates 1a, b followed by phosphorylmethylation or the phosphorylmethylation of the ester 1c followed by ring opening leads to the 5-acetal of 2,5-dioxopentylphosphonate 4. The Horner-Emmons olefination of 4 with various aldehydes produces the title compounds

4-Oxo-5-hexenals are highly functionalized compounds, especially useful in the study of intramolecular dipolar cycloaddition reactions, since they bear a formyl moiety and a carbonyl-activated internal dipolarophile in the same molecule.¹ We have recently reported a new synthesis of 4-oxo-5-hexenals, by a sequence of cyclopropanation of vinyl ethers with 1-diazo-3-trimethylsilyl-2-propanone, Peterson olefination, and trifluoroacetic acid-induced ring opening of the cyclopropane ring (Scheme A).²

Scheme A

Herein we describe a revision of the previous method, where the rather cumbersome preparation of 1-diazo-3-silyl-2-propanone and the use of moisture-sensitive cyclopropyl silylmethyl ketones have been eliminated. The main synthetic advantages over the previous method are the use of readily available cyclopropanecarboxylates and the adoption of the *E*-selective Horner–Emmons olefination.

Ethyl 2-alkoxy-1-cyclopropanecarboxylates 1 a-d, which are readily available in multigram quantities by the cyclopropanation of the corresponding vinyl ethers with ethyl diazoacetate in the presence of copper(II) acetylacetonate,³ were converted to either the ring-opened acetal esters 2a, b or 2-phenoxycyclopropyl phosphorylmethyl ketone 3.

Although the acid-catalyzed ring opening of 2-alkoxy-1-cyclopropanecarboxylates $1 \mathbf{a} - \mathbf{c}$ was totally unsuccessful under the previous reaction conditions using 1,2-ethanediol and trifluoroacetic acid in nitromethane, trifluoromethanesulfonic acid in tetrahydrofuran, as a stronger acid, resulted in rapid ring opening to afford $2 \mathbf{a}$, \mathbf{b} in excellent yield (Scheme \mathbf{B}). A mixture of cis- and trans isomers of 1 can be used. Thus, the trifluorometh-

anesulfonic acid-induced ring opening of 2-alkoxy-1-cyclopropanecarboxylates offers an highly efficient short-step synthetic route to γ -oxo esters in an acetal-protected form, which are important multifunctionalized compounds in natural product synthesis.^{4,5}

The phosphorylmethylation of 1c gave 3 (90%), likewise 2a gave 4 (86%), in a simple and high-yielding process, where two equivalents of dimethyl (lithiomethyl)phosphonate were used as usual. The ring opening of cyclopropyl ketone 3 was much easier than that of cyclopropyl esters 1; the reaction was effected by trifluoroacetic acid in nitromethane in the presence of 1,2-ethanediol to give acetal phosphonate 4 in an almost quantitative yield (98%) (Scheme B).

The Horner-Emmons olefination of 2-oxoalkylphosphonate 4 was safely carried out by treatment with lithium bromide and triethylamine in tetrahydrofuran at 0° C, followed by the reaction with an aldehyde at room temperature. A variety of aldehydes such as aryl, alkyl, α,β -unsaturated, and ester-functionalized aldehydes were used without trouble to give 5a-d in satisfactory yields (Scheme B). In all cases, only the E-isomer of 5 was obtained.

1	\mathbf{R}'	R"	2	\mathbf{R}'	5, 6	R
a	Н	Et	a	Н	а	Ph
b	Н	<i>i</i> -Bu	b	Me	b	Me
c	Н	Ph			c	(E)-PhCH=CH
d	Me	Me			d	CO ₂ Me

6 a - d

Scheme B

1168 Papers SYNTHESIS

Deacetalization of 5a-d with dilute hydrochloric acid in tetrahydrofuran at room temperature afforded 4-oxo-5-hexenals 6a-d in good yield (Scheme B). In the case of 5d, the reaction time was carefully optimized by monitoring the reaction by TLC.

Since it is known that the Horner-Emmons olefination of 3 leads to 2-alkoxycyclopropyl vinyl ketones, 8 a direct synthetic route to 5a-d and 6a-d is now available, via the Horner-Emmons olefination of 3 followed by the acid-catalyzed cyclopropane ring-opening.²

Ethyl 3-(1,3-Dioxolan-2-yl)propionate (2a); Typical Procedure:

To a solution of 1a (1.58 g, 10 mmol) in THF (10 mL) at 0°C are added 1,2-ethanediol (1.1 mL, 20 mmol) and CF₃SO₃H (0.89 mL, 10 mmol). The mixture is stirred at 0°C for 20 min, poured into sat. aq NaHCO₃, and extracted with CH₂Cl₂ (2×15 mL). The combined extracts are dried (MgSO₄) and concentrated *in vacuo*. The residue is distilled on a Kugelrohr apparatus to give 2a; yield: 1.6 g (92%); bp 140°C/3 mbar (oven temp). Yield of 2a from 1b: 87%. (Lit. 4 bp 117–122°C/23 mbar).

2b (from **1d**); yield: 92%; bp 140° C/3 mbar (oven temp) (Lit. bp $104-105^{\circ}$ C/9-11 mbar).

Dimethyl [2-Oxo-2-(2-phenoxycyclopropyl)ethyl]phosphonate (3):

To a 1.6 M hexane solution of BuLi (1.46 mL, 2.4 mmol) in THF (3 mL), at $-78\,^{\circ}$ C under dry N₂ is added dimethyl methylphosphonate (0.26 mL, 2.4 mmol). After 1.5 h, 1b (0.206 g, 1 mmol) in THF (2 mL) is added and the stirring is continued for 1.5 h. The mixture is treated with NH₄Cl and extracted with CH₂Cl₂ (2×10 mL). The combined extracts are dried (MgSO₄) and concentrated *in vacuo*. The residue is chromatographed on silica gel using EtOAc as eluent to give *trans* and *cis* isomers of 3. The *cis/trans* mixture may be submitted, without separation, to the following transformation into 4.

trans-3: yield: 166 mg (59%); oil.

C₁₃H₁₇O₅P calc. C 54.94 H 6.03 (284.3) found 54.63 6.17

IR (neat): $v = 1690, 1245, 1045, 1025 \,\mathrm{cm}^{-1}$.

¹H-NMR (CDCl₃): δ = 1.57 (ddd, 1 H, J = 9.7, 6.0, 4.9 Hz, H-3), 1.67 (ddd, 1 H, J = 6.5, 6.5, 6.0 Hz, H-3), 2.46 (ddd, 1 H, J = 9.7, 6.5, 2.7 Hz, H-1), 3.28, 3.29 (d each, 2 H, $J_{\rm H,P}$ = 22.3 Hz, PCH₂), 3.75, 3.79 (d each, 6 H, $J_{\rm P,H}$ = 11.4 Hz, OCH₃), 4.10 (ddd, 1 H, J = 6.5, 4.9, 2.7 Hz, H-2), 6.9–7.3 (m, 5 H, C₆H₅).

 $^{13}\text{C-NMR}$ (CDCl₃): $\delta=19.18$ (C-3), 30.29 (C-1), 42.44 ($J_{\text{C,P}}=128.1~\text{Hz},~\text{PCH}_2$), 52.99 ($J_{\text{C,P}}=6.8~\text{Hz},~\text{OCH}_3$), 53.15 ($J_{\text{C,P}}=5.8~\text{Hz},~\text{OCH}_3$), 60.32 (C-2), 114.91, 121.85, 129.57, 157.79 (C $_{\text{arom}}$), 199.20 ($J_{\text{C,P}}=6.8~\text{Hz},~\text{CO}$).

MS (70 eV): m/z (%) = 284 (M⁺, 1), 191 (77), 190 (21), 151 (20), 109 (100), 105 (27), 94 (45), 80 (93), 78 (44), 76 (91), 65, (34), 53 (30).

cis-3: yield: 88 mg (31 %); oil.

C₁₃H₁₇O₅P calc. C 54.94 H 6.03 (284.3) found 54.81 6.22

IR (neat): v = 1700, 1245, 1050, 1025 cm⁻¹.

¹H-NMR (CDCl₃): δ = 1.39 (ddd, 1 H, J = 8.6, 6.0, 6.0 Hz, H-3), 1.94 (ddd, 1 H, J = 6.0, 6.0, 5.4 Hz, H-3), 2.62 (ddd, 1 H, J = 8.6, 6.0, 6.0 Hz, H-1), 3.02, 3.23 (d each, 2 H, $J_{\text{H,P}}$ = 22.7 Hz, PCH₂), 3.71, 3.74 (d each, 6 H, $J_{\text{H,P}}$ = 11.6 Hz, OCH₃), 4.12 (ddd, 1 H, J = 6.0, 6.0, 5.4 Hz, H-2), 6.9–7.3 (m, 5 H, C₆H₅).

 $^{13}\text{C-NMR}$ (CDCl₃): $\delta=14.43$ (C-3), 29.57 (C-1), 42.30 ($J_{\text{C,P}}=129.1~\text{Hz},~\text{PCH}_2$), 52.93 ($J_{\text{C,P}}=5.8~\text{Hz},~\text{OCH}_3$), 53.10 ($J_{\text{C,P}}=7.0~\text{Hz},~\text{OCH}_3$), 58.10 (C-2), 114.95, 121.82, 129.49, 158.09 (C_{arom}), 194.88 ($J_{\text{C,P}}=5.9~\text{Hz},~\text{CO}$).

Dimethyl [4-(1,3-Dioxolan-2-yl)-2-oxobutyl]phosphonate (4):

Method A, from 3: To a solution of 3 (0.119 g, 0.42 mmol) in CH₃NO₂ (2 mL) at r.t. under dry N₂ are added 1,2-ethanediol

(0.047 mL, 0.82 mmol) and $\text{CF}_3\text{CO}_2\text{H}$ (0.031 mL, 0.42 mmol). The mixture is stirred for 30 min, poured into sat. aq NaHCO₃, and extracted with CH_2Cl_2 $(2 \times 10 \text{ mL})$. The combined extracts are dried (MgSO₄) and concentrated *in vacuo*. The residue is chromatographed on silica gel using EtOAc to give 4; yield: 0.104 g (98%).

Method B, from 2a: To a 1.6 M hexane solution of BuLi (2.48 mL, 4 mmol) in THF (5 mL) is added dimethyl methylphosphonate (0.54 mL, 4.96 mmol) at $-78\,^{\circ}$ C under dry N₂. After 1 h, 2a (0.346 g, 2 mmol) is added. The mixture is stirred at $-78\,^{\circ}$ C for 3 h, poured into sat. aq NH₄Cl, and extracted with CHCl₃ (2×15 mL). The combined extracts are dried (MgSO₄) and concentrated in vacuo. The residue is distilled in a Kugelrohr apparatus to give 4; yield: 0.433 g (86%); bp 45 $^{\circ}$ C/0.5 mbar.

HRMS: m/z calc. for $C_9H_{17}O_6P$: 252.0762; found: 252.0765 (M⁺). IR (neat): $v = 1715, 1400, 1255, 1020, 810 \text{ cm}^{-1}$.

¹H-NMR (CDCl₃): δ = 1.99 (ddd, 2 H, J = 7.3, 7.3, 4.4 Hz, H-4), 2.74 (t, 2 H, J = 7.3 Hz, H-3), 3.12 (d, 2 H, J_{H,P} = 22.7 Hz, PCH₂), 3.77, 3.81 (d, 6 H, J_{H,P} = 11.0 Hz, OCH₃), 3.8–4.0 (m, 4 H, OCH₂CH₂O), 4.92 (t, 1 H, J = 4.4 Hz, CH).

¹³C-NMR (CDCl₃): δ = 27.47 (C-4), 37.98 (C-3), 41.19 ($J_{\rm C,P}$ = 129.1 Hz, PCH₂), 53.06 ($J_{\rm C,P}$ = 5.9 Hz, OCH₃), 65.01 (OCH₂CH₂O), 102.99 (CH), 201.06 (C-2, $J_{\rm C,P}$ = 6.8 Hz).

MS (70 eV): m/z (%) = 252 (M⁺, 2), 124 (12), 87 (28), 73 (100).

(E)-2-(3-Oxo-4-hexenyl)-1,3-dioxolane (5b); Typical Procedure:

To a mixture of 4 (1 g, 4 mmol) and LiBr (0.522 g, 6 mmol) in dry THF (15 mL) is added $\rm Et_3N$ (0.67 mL, 4.8 mmol) at 0 °C under dry $\rm N_2$: After stirring for 30 min, acetaldehyde (0.89 mL, 16 mmol) is added. The mixture is stirred at r.t. for 4 h, poured into water, and extracted with $\rm Et_2O$ (2 × 20 mL). The combined extracts are dried (MgSO₄) and concentrated *in vacuo*. The residue is chromatographed on silica gel using hexane/ $\rm Et_2O$ (1:1) to give 5b; yield: 0.544 g (80%); oil.

HRMS: m/z calc. for $C_9H_{14}O_3$: 170.0942; found: 170.0939 (M⁺). IR (neat): $v = 1670, 1630, 1435, 1130, 1025 \text{ cm}^{-1}$.

¹H-NMR (CDCl₃): δ = 1.90 (dd, 3 H, J = 7.0, 1.5 Hz, H-6), 2.00 (ddd, 2 H, J = 7.3, 7.3, 4.4 Hz, H-1), 2.67 (t, 2 H, J = 7.3 Hz, H-2), 3.8–4.0 (m, 4 H, OCH₂H₂O), 4.92 (t, 1 H, J = 4.4 Hz, CH), 6.13 (dq, 1 H, J = 15.7, 1.5 Hz, H-4), 6.87 (dq, 1 H, J = 15.7, 7.0 Hz, H-5)

¹³C-NMR (CDCl₃): δ = 18.23 (C-6), 27.88 (C-1), 33.75 (C-2), 64.97 (OCH₂CH₂O), 103.49 (OCHO), 131.87 (C-4), 142.59 (C-5), 199.35 (CO).

MS (70 eV): m/z (%) = 170 (M⁺, 8), 110 (10), 87 (12), 86 (18), 73 (100), 69 (26).

5a: yield: 65%; oil (Lit.2 oil).

5c: yield: 60%; mp 66-70°C (Lit.² mp 66-70°C).

5d: yield: 29%; oil (eluent for chromatography, hexane/EtOAc, 3:2).

HRMS: m/z calc. for $C_{10}H_{14}O_5$: 214.0840; found: 214.0843 (M⁺). IR (neat): $v = 1725, 1630, 1440, 1390, 1230, 1030 \text{ cm}^{-1}$.

¹H-NMR (CDCl₃): δ = 2.05 (ddd, 2 H, J = 7.2, 7.2, 4.4 Hz, H-6), 2.75 (t, 2 H, J = 7.2 Hz, H-5), 3.75 (s, 3 H, CO₂CH₃), 3.8–4.0 (m, 4 H, OCH₂CH₂O), 4.95 (t, 1 H, J = 4.4 Hz, OCHO), 6.03 (d, 1 H, J = 12.1 Hz, H-3), 6.53 (d, 1 H, J = 12.1 Hz, H-2).

 13 C-NMR (CDCl₃): δ = 27.44 (C-6), 36.51 (C-5), 52.06 (CO₂CH₃), 65.01 (OCH₂CH₂O), 103.16 (OCHO), 124.32 (C-3), 141.92 (C-2), 165.73 (CO₂CH₃), 202.89 (C-4).

MS (70 eV): m/z (%) = 214 (M⁺, 1), 182 (10), 87 (12), 86 (20), 73 (100).

(E)-4-Oxo-6-phenyl-5-hexenal (6a); Typical Procedure:

A solution of 5a (0.256 g, 1.1 mmol) in THF (4 mL) containing 4 N HCl (2 mL) is stirred at r.t. for 2 h and extracted with CH₂Cl₂ (2×15 mL). The combined extracts are washed with aq NaHCO₃, dried (MgSO₄), and concentrated *in vacuo*. The residue is chroma-

December 1990 SYNTHESIS 1169

tographed on silica gel using hexane/EtOAc (9:1) as eluent to give 6a; yield: 207 mg ($\sim 100\%$); oil (Lit.² oil).

6c: reaction time 3 h; yield: 86%; mp 71-73°C (Lit.² mp 71-73°C).

6b: reaction time 24 h; yield 77 %.

C₇H₁₀O₂ calc. C 66.64 H 7.99 (126.2) found 66.69 8.10

IR (neat): v = 1730, 1680, 1640, 1450, 1200, 980 cm⁻¹.

¹H-NMR (CDCl₃): δ = 1.92 (dd, 3 H, J = 6.8, 1.8 Hz, H-7), 2.78, 2.88 (2 br t, 4 H, H-2, H-3), 6.16 (dq, 1 H, J = 15.7, 1.8 Hz, H-5), 6.92 (dq, J = 15.7, 6.8 Hz, H-6), 9.83 (s, 1 H, H-1).

¹³C-NMR (CDCl₃): δ = 18.30 (C-7), 32.01 (C-3), 37.46 (C-2), 131.50 (C-5), 143.29 (C-6), 197.70 (C-4), 200.69 (C-1).

MS (70 eV): m/z (%) = 126 (M⁺, 5), 84 (15), 83 (29), 73 (39), 69 (100).

6d: reaction time 0.5 h; yield: 89 %; oil.

HRMS: m/z calc. for $C_8H_{10}O_4$: 170.0578; found: 170.0581.

IR (neat): v = 1720, 1680, 1315, 1175 cm⁻¹.

¹H-NMR (CDCl₃): δ = 2.8–3.0 (m, 4H, H-2, H-3), 3.83 (s, 3H, CO₂CH₃), 6.73 (d, J = 16.0 Hz, H-5), 7.11 (d, 1H, J = 16.0 Hz, H-6), 9.83 (br s, 1 H, H-1).

 $^{13}\text{C-NMR}$ (CDCl₃): $\delta = 33.53$ (C-3), 37.25 (C-2), 52.42 (CO₂CH₃)₂ 130.87 (C-5), 139.02 (C-6), 165.83 (CO₂Me), 197.26 (C-4), 199.75 (C-1).

MS (70 eV): m/z (%) = 170 (M⁺, 5), 142 (50), 139 (24), 138 (54), 128 (47), 114 (65), 113 (100), 111 (37), 110 (42), 83 (27).

Received: 25 June 1990

- (1) Kanemasa, S.; Doi, K.; Wada, E. Bull. Chem. Soc. Jpn., submitted.
- (2) Tsuge, O.; Kanemasa, S.; Otsuka, T.; Suzuki, T. Bull. Chem. Soc. Jpn. 1988, 61, 2897.
- (3) Doyle, M.P.; Leusen, D.V.; Tamblyn, W.H. Synthesis 1981, 787.
- (4) Overman, L.E.; Lesiusse, D.; Hashimoto, M. J. Am. Chem. Soc. 1983, 105, 5373.
- (5) Rocca, J. R.; Tumlinson, J. H.; Glancey, B. M.; Lofgren, C.S. Tetrahedron Lett. 1983, 24, 1893.
- (6) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183.
 - Rathke, M. W.; Nowak, M. J. Org. Chem. 1985, 50, 2624.
- (7) Tsuge, O.; Kanemasa, S.; Suga, H. Chem. Lett. 1987, 323.
 Tsuge, O.; Kanemasa, S.; Nakagawa, N.; Suga, H. Bull. Chem. Soc. Jpn. 1987, 60, 4091.
 Kanemasa, S.; Nakagawa, N.; Suga, H.; Tsuge, O. Bull. Chem. Soc. Jpn. 1989 62, 171.
- Tsuge, O.; Kanemasa, S.; Otsuka, T. Rep. Inst. Adv. Mat. Study 1989, 2, 41.