Journal of Organometallic Chemistry, 387 (1990) 131-146 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands JOM 20515

Preparation of 2-oxygen derivatives of 1,2-oxaborolane from 2-allyloxy-1,2-oxaborolane

Zhou Weike *, Lo Weiming, Zhang Gaoyi, Ding Hongxun and Liang Shaofang Shanghai Institute of Organic Chemistry, Academia Sinica 345 Lingling Lu, Shanghai, 200032 (China) (Received October 25th, 1989)

Abstract

2-Allyloxy-1,2-oxaborolane (V), readily obtained by hydroboration of allyl alcohol with borane reagents such as KBH₄-HOAc, was used as a key reactant in the synthesis of a series of 2-oxygen derivatives of 1,2-oxaborolane. 2-Allyl-1,2-oxaborolane (XXIII) and 2-hydro-1,2-oxaborolane dimethylsulfide complex (XXIV), prepared from the reaction of V with allylmagnesium bromide and dimethylsulfide-borane complex (BMS) respectively, were also used as the reactive intermediates for some of the lower 2-alkyloxy-1,2-oxaborolanes. Five procedures and other probable routes from V to 2-oxygen derivatives of 1,2-oxaborolane are described.

Introduction

The 2-oxygen derivatives of 1,2-oxaborolane, possessing a boron-carbon ring bond and a boron-oxygen ring bond, in addition to an exocyclic boron-oxygen bond, share some of the features of alkyl boranes (R₃B) and borate esters (RO)₃B. The structural form of this class of cyclic boronate esters and related bis-(1,2-oxaborolane)s are shown below:

$$\begin{pmatrix}
B-O-R & B-O-B \\
O & O
\end{pmatrix}
\begin{pmatrix}
B-O-R-O-B \\
O & O
\end{pmatrix}$$

In 1960 Koester briefly described the first preparation of 1,2-oxaborolane derivatives (eq. 1) [1]. In 1965 Mikhailov and Dorokhov reported the preparation of some 2-alkoxy-1,2-oxaborolanes (I–IV) from triallyl borate (eqs. 2, 3) [2].

$$B(OCH2CH = CH2)3 + R3N:BH3 + R'3B \longrightarrow 3 B - R'$$
O
(1)

$$B(OCH_2CH = CH_2)_3 + B_2H_6/OEt_2 \xrightarrow{B(OBu)_3} B - O(CH_2)_3CH_3$$

$$(I, 52\%)$$

$$I + (CH3CH2CH2CH2)2BOCH3 \longrightarrow B - O - CH3$$

$$O$$

$$(IV, 97\%)$$
(3)

$$CH_{2}=CHCH_{2}OH + [BH_{3}] \xrightarrow{-H_{2}} B(OCH_{2}CH=CH_{2})_{3} + B-OCH_{2}CH=CH_{2}$$

$$(45-55\%) \qquad (V, 40-50\%)$$

$$(4)$$

$$[BH_3] = Et_3N : BH_3 (>100 °C)$$

or $[BH_3] = NaBH_4$ or KBH_4 with HOAc $(R.T. to 100 °C)$

During 1981–1982 we published similar results on the hydroboration of allyl alcohol (eq. 4) and triallyl borate [3,4]. The reaction of allyl alcohol with hydroborating agents, such as triethylamineborane, sodium or potassium borohydride-acetic acid, gives 2-allyloxy-1,2-oxaborolane (V) in addition to triallyl borate in moderate yield. We decided to investigate the general procedure for preparation of 2-substituted derivatives of 1,2-oxaborolane, and herein we report some of the results on the preparation of 2-oxygen derivatives starting from V.

Results and discussion

Dehydrogenation-hydroboration of allyl alcohol with KBH₄-HOAc at room temperature without other solvent directly gives the cyclic product V in 40-50% yield [3]. In turn, the 1,2-oxaborolane V can be used as a convenient starting material for preparing some interesting 2-alkyloxy- and 2-aryloxy-1,2-oxaborolanes by transesterification [4,5] (Procedure A).

$$\begin{array}{c}
B - O - CH_2CH = H_2 + ROH \xrightarrow{100-170^{\circ}C} & B - O - R + CH_2 = CHCH_2OH \\
O & O & O & O & O
\end{array}$$
(V) (73-95%)

(5)

Owing to the greater stability of the 1,2-oxaborolane ring the heat exchange reaction of 2-allyloxy-1,2-oxaborolane (V) with alcohols (or phenols) becomes facile if a slight excess of higher boiling point (> 100 °C) alcohols is used. A variety of products (II, III and VI-XX) having various functional groups can be readily obtained in 73-95% yields (eq. 5). The mass spectra of some of the compounds have been determined and the mass spectrometric fragmentation pattern has been discussed [6].

A 2:1 molar ratio reaction of V with water gave a glassy partial-hydrolysis product XXI (eq. 6). The structure of XXI was determined by elemental analysis, IR, ¹H NMR and mass spectroscopy. 2,2'-Oxy-bis-(1,2-oxaborolane) (XXI) is a reactive intermediate and may be considered as a cyclic boronic anhydride.

Up to now considerable work has been directed at finding a more reactive derivative having a versatile exocyclic substituent in the 1,2-oxaborolane system. Our efforts have been successful. The reaction of V with thionyl chloride gives 2-chloro-1,2-oxaborolane (XXII) [4]; the reaction of V with triallylborane or allylmagnisum bromide gives 2-allyl-1,2-oxaborolane (XXIII) [4,5]; 2-hydro-1,2-oxaborolane dimethylsulfide (XXIV) can be isolated from the reaction of V with dimethylsulfide-borane (BMS) in good yield [7], eqs 7; 8; 9; 10, respectively.

$$\begin{array}{c|c}
B - OCH_2CH = CH_2 + SOCI_2 \xrightarrow{70-80^{\circ}C} & B - CI \\
O & & O
\end{array}$$
(V)
(XXII, 70%)

$$V + B(CH_2CH = CH_2)_3 \xrightarrow{145^{\circ}C} B - CH_2CH = CH_2$$

$$O$$
(8)

(XXIII, 87%)

$$V + CH2 = CHCH2MgBr \xrightarrow{Et2O} XXIII$$

$$(45-57\%)$$
(9)

$$V + H_3B: SMe_2 \xrightarrow{0-5^{\circ}C} \bigcirc B \leftarrow : SMe_2 + \bigcirc B - CH_2CH_2CH_2O - B \bigcirc (XXIV, 67\%)$$

$$(XXIV, 67\%) \qquad (XXV)$$

Thus a variety of 2-alkyloxy-1,2-oxaborolanes can be prepared by the interaction of the reactive compounds XXI, XXII, XXIII or XXIV with alcohols.

Particularly the lower derivatives, which cannot be prepared from V by Procedure A, were obtained by Procedure B (eq. 11) or Procedure C (eq. 12) in satisfactory yield. Compounds XXIV and XXIII possess high reactivities because XXIV is a specific hydroborating agent and XXIII is a specific allylborane.

$$\begin{array}{c}
H \\
B \leftarrow : SMe_2 + ROH \longrightarrow H_2 + B - OR + S(CH_3)_2 \\
O \\
(XXIV)
\end{array}$$
(12)

XXVII: $R = CH_2CH_2CH_3$ XXVIII: $R = CH(CH_3)_2$

One of the hydroboration products of V or of triallyl borate, 2,2'-trimethylene-oxy-bis-(1,2-oxaborolane) (XXV), was also used as an intermediate in the preparation of some 2-alkyloxy derivatives (eq. 13). Thus triallyl borate, the by-product of the hydroboration of allyl alcohol, can be transformed into the cyclic compound V by this procedure. In Procedure C the small amount of B(OR)₃ present as an impurity can be removed by this heat exchange reaction, so that the facile one-pot Procedure D is recommended. A number of 2-alkyloxy-1,2-oxaborolanes (XXIX-XXXI) were conveniently prepared from the reaction of V with dimethyl-sulfide-borane or triethylamineborane complex, in situ, followed by reaction with an alcohol (eq. 14).

$$\begin{array}{c}
B - CH_2CH_2CH_2 - O - B \\
O & O
\end{array}$$

$$+ B(OR)_3 \longrightarrow \begin{array}{c}
B - OR \\
O & O
\end{array}$$

$$(XXV)$$

$$\begin{array}{c}
R
\end{array}$$

The hydroboration of V with XXIV gives bis-1,2-oxaborolane XXV (eq. 15) [7].

Of course the key reactants XXIII and XXIV were also used in alternative synthetic reactions in which 2-oxygen derivatives of 1,2-oxaborolane are formed as intermediates. The reaction of allylborane XXIII with ketones or aldehydes proceeds smoothly to give the intermediates XXXII; subsequent heat exchange reaction with ethanolamine or triethanolamine gives the corresponding allylic carbinols XXXII (eq. 16) [8]. In the reduction of ketones and aldehydes with the borane reagent XXIV, an intermediate XXXIV were isolated (eq. 17). For example, 2-cyclohexyloxy-1,2-oxaborolane II was obtained from the reduction of cyclohexone [7].

Bromination of V gives 2-(2,3-dibormopropoxy)-1,2-oxaborolane (XXXV) (eq. 18), which can also be obtained by Procedure A from V and 2,3-dibromopropanol. It has been found that 2-amino-1,2-oxaborolanes (XXXVI), obtained from one-pot

reaction of V with XXIV and followed with amine, can also be converted into 2-alkyloxy derivatives without difficulty (eq. 19) [9].

$$\begin{array}{c}
B - OCH_2CH = CH_2 + Br_2 \xrightarrow{5^{\circ}C, 2.5 \text{ h}} & B - OCH_2CHBrCH_2Br \\
O & (V) & (XXXV, 69\%)
\\
B - OCH_2CH = CH_2 + BMS \longrightarrow XXIV \xrightarrow{R'R''NH} & B - NR'R'' \xrightarrow{ROH} \\
O & (V) & B - OR & (19)
\\
(XXXVI, R' = H; R'' = CH_2CH_2CH_3)
\end{array}$$

A number of related bis-(1,2-oxaborolane) derivatives (XXXVII-L) were prepared by the heat exchange reaction of V with diols, such as catechol, resorcinol, hydroquinone, in 2:1 molar ratio (Procedure E, eq. 20). The formulas are shown below:

Some bis-(1,2-oxborolane) derivatives have been shown to possess bicyclic and network-like structures according to their Raman spectra [10,11].

These 2-oxygen derivatives of 1,2-oxoborolane were usually isolated pure; most are colourless liquids. Their physical data and molar refractions are listed in Tables

1 and 2. The especially reactive compounds XXI, XXII, XXIII, XXIV and XXXVI as well as starting material V are listed in Table 3. Their analytical and spectral data are given in the experimental section.

The reactions of V as a typical example are summarized as depicted in Scheme 1. We are presently investigating their potential in organic synthesis, e.g. for the

Table 1
2-Alkoxy- and 2-aryloxy-1,2-oxaborolanes

Compound R (No.)	Yield (%) [Procedure or ref.]	B.p. (°C/mmHg)	n _D ²⁰	d_4^{20}	Molar refraction	
					Calcd.	Found
CH ₃ (IV)	97 [2]	104-106°C	1.4327	0.996	25.83	26.06
CH ₂ CH ₃ (XXVI)	80 [B]	118-120°C	1.4208	0.9323	30.48	30.98
CH ₂ CH ₂ CH ₃ (XXVII)	83 [C]	134-136°C	1.4133	0.9011	35.13	35.44
CH(CH ₃) ₂ (XXVIII)	87 [C]	123-124° C	1.3978	0.8629	35.13	35.78
CH ₂ CH ₂ CH ₂ CH ₃ (I)	52 [2]	70-73/25	1.4345	0.931	39.78	39.76
$CH_2CH(CH_3)_2$ (XXXI)	76 [D]	68-71/37	1.4311	0.9254	39.78	39.73
CH(CH ₃)CH ₂ CH ₃ (XXIX)	85 [D]	67-69/42	1.4240	0.9080	39.78	39.91
$C(CH_3)_3$ (XXX)	71 [D]	48-50/42	1.4149	0.8883	39.78	40.02
$CH_2(CH_2)_3CH_3$ (VI)	83 [3]	76-77/15	1.4298	0.9109	44.43	44.23
$CH_2(CH_2)_6CH_3$ (VII)	73 [A]	115-117/12	1.4413	0.9030	58.37	57.98
	82 [2]	90-92/12	1.4668	0.993	46.86	46.94
(II)	76 [4]	94-95/15	1.4663	0.9949	46.86	46.81
(VIII)	90 [4]	118-120/20	1.4813	1.002	56.31	55.73
$CH_2CH=CH_2(V)$	a [3]	55-56/15	1.4489	0.9729	34.65	34.72
CH ₂ C≡CH (IX)	92 [A]	49-52/15	1.4658	1.042	33.00	32.93
CH ₂ CH ₂ OCH ₃ (X)	67 [A]	59-62/10	1.4420	1.030	36.91	36.99
CH ₂ CH ₂ OCH ₂ CH ₃ (XI)	75 [A]	49-50/1.5	1.4390	0.9970	41.56	41.68
$(CH_2CH_2O)_2C_2H_3$ (XII)	81 [A]	92-93/1.2	1.4470	1.0387	52.64	51.98
$(CH_2CH_2O)_3C_2H_5$ (XIII)	87 [A]	130-131/1.6	1.4499	1.0406	63.72	63.55
CH ₂ CH ₂ NH ₂ (III)	95 [2,4]	Mp. 161-162°	С			
CH,CH,Cl (XIV)	83 [A]	66-67/15	1.4647	1.163	35.32	35.25
CH ₂ CH ₂ Br (XV)	78 [A]	83-84/15	1.4910	1.4687	38.20	38.03
CH ₂ CHBrCH ₂ Br (XXXV)	69 b	96-98/1	1.5322	1.7424	50.56	50.84
$CH_2 - \left(\bigcirc \right) (XVI)$	75 [A]	76-77/0.3	1.5242	1.076	50.28	50.07
CH ₂ CH ₂ -\(\infty\) (XVII)	88 [A]	101-104/3	1.5181	1.0519	54.93	54.76
(CH ₂) ₃ -(XVIII)	86 [A]	115-117/3	1.5129	1.0285	59.57	59.63
CH ₂ -OCH ₃ (XIX)	73 [A]	151-152/10	1.5303	1.118	57.16	56.96
$\langle \bigcirc \rangle_{(XX)}$	81 [A]	94-95/10	1.5326	1.113	45.78	45.14

^a Starting material: 2-allyloxy-1,2-oxaborolane. ^b By bromination of V.

Table 2
Some bis-(1,2-oxaborolane)s obtained from the reaction of V with diols or phenols

Compound	Yield (%)	B.p.	n _D ²⁰	d_4^{20}	Molar Refraction	
-ORO- (No.)	[Procedure or ref.]	(°C/mmHg)			Calcd.	Found
-O- (XXI)	50-78 a	115-116/15	glassy			
-OCH ₂ CH ₂ O- (XXXVII) CH ₃	87 [4]	98-100/0.2	1.4602	1.098	49.61	49.37
- OCHCH ₂ O- (XLI)	86 [4]	92-95/0.3	1.4520	1.056	54.26	54.12
CH ₃ CH ₃						
-OCH-CHO- (XLII)	90 [4]	110-112/0.4	1.4513	1.038	58.91	58.63
CH ₂ CH ₃						
$-OCH-CH_2O-(XLIII)$	82 [E]	105-108/2	1.4536	1.041	58.91	58.72
CH ₂ Cl						
-OCH-CH ₂ O-(XLIV)	84 [E]	106-107/0.1	1.4722	1.180	59.09	58.47
-O(CH ₂) ₃ O- (XXXVIII)	83 [E]	89-91/0.3	1.4622	1.085	54,26	53.70
$-O(CH_2)_4O-(XXXIX)$	87 [E]	107-108/3.5			viscous fl	
$-O(CH_2)_5O-(XL)$	85 [E]	116-118/0.3		highly	viscous fl	uid
-OCH ₂ CH ₂ OCH ₂ CH ₂ O- (XLV)	84 [E]	113-118/2			viscous fl	
-OCH ₂ CH ₂ SCH ₂ CH ₂ O- (XLVI)	80 [E]	118-128/2			viscous fl	
-OCH ₂ C≡CCH ₂ O- (XLVII)	70 [E]	120-125/0.3		highly	viscous fl	uid
$-O-\langle O \rangle$ (XLVIII)	76 [E]	109-111/0.3	1.5155	1.149	64.35	64.50
$-O-\langle O-\rangle$ (XLIX)	^b [E]	151-155/0.4	white so	olid		
-0-(L)	^b [E]	145-150/0.4	white so	olid		

^a By partial hydrolysis of V. ^b Not the exact isolated yield.

synthesis of 1,4-alkanediols from allyl alcohol by hydroboration and homologation of the 1,2-oxaborolane intermediate [12].

Experimental

All operations with the organoboranes were carried out under purified nitrogen. IR were recorded on a Specord 75 spectrophotometer. ¹H NMR spectra were recorded on a Varian Model EM-360 (60 MHz) or a JEOL 90 MHz instrument relative to internal TMS. ¹¹B NMR spectra were recorded on a Varian XL-200 spectrometer relative to external F₃B: OEt₂.

Table 3			
The more	reactive	1.2-oxaborolane	derivatives

Compound (No.)	B.p. (°C/mmHg)	n_{D}^{20}	d_4^{20}	Ref.
$ \begin{array}{c c} B - OCH_2CH = CH_2 & (V) \\ O \end{array} $	55-56/15	1.4489	0.9729	[3]
$ \begin{pmatrix} B - O - B \\ O & O \end{pmatrix} (XXI) $	115-116/15		glassy	this work
B-Cl (XXII)	Mp. 94.5-96°C	white needle-like crystals [4]		
B-CH ₂ CH=CH ₂ (XXIII)	48-50/50	1.4308	0.8616	[4,5] this work
$B \leftarrow : SMe_2 (XXIV)$	40-41/60	1.4472	0.824	[7]
B-NHCH ₂ CH ₂ CH ₃ O (XXXVI)	58-61/20	1.4382	0.8976	[9]

Starting material V was prepared by the reaction of allyl alcohol with KBH₄-HOAc as described previously [3]. 2-Allyl-1,2-oxaborolane (XXIII) and 2-hydro-1,2-oxaborolane dimethylsulfide complex (XXIV) were obtained from the reaction of V with allylmagnesium bromide in ether and from the reaction of V with the dimethylsulfide-borane complex (BMS) in methyl sulfide, respectively (Table 3). BMS was purchased from the Aldrich Company.

Boiling points are uncorrected.

Procedure A: The reaction of V with alcohols and phenol

2-n-Octoxy-1,2-oxaborolane (VII)

A dry, nitrogen-filled, 30-ml distillation flask equipped with a side arm capped with a rubber septum, a magnetic stirring bar, a Claisen head attached to an oil

bubbler, was charged with 7.56 g (60 mmol) of 2-allyloxy-1,2-oxabororane (V) and 9.5 ml of n-octanol. The mixture was stirred and heated on an oil-bath at $160-180^{\circ}$ C for 2 h, the allyl alcohol was slowly distilled off under atmospheric pressure. Distillation of the residue under vacuum gave 8.63 g (85.1%) of VII, b.p. $115-117^{\circ}$ C/12 mmHg, n_D^{20} 1.4413. Anal. Found: B, 5.52; C, 66.38; H, 12.04. $B_{11}H_{23}O_2$ calcd: B, 5.46; C, 66.69; H, 11.94%.

IR(film): ν (cm⁻¹) 724w, 825w, 861w, 900m, 995s, 1025m, 1063m, 1139m, 1201s, 1255s, 1355s, 1409sh, 1428s, 1457s, 1493s, 2850sh, 2950vs. ¹H NMR(CCl₄): δ (ppm) 0.87 (m, 5H, BCH₂, CH₃); 1.28, 1.97 (m, 14H, (CH₂)₆, CCH₂C); 3.82, 3.95 (tt, 4H, J 7 Hz, (OCH₂)₂).

2-(2-Propynyloxy)-1,2-oxaborolane (IX)

Starting from 12.6 g (100 mmol) of V and 8.0 g (142 mmol) of propargyl alcohol, the procedure as described above gave 11.4 g (92.0%) of IX, b.p. $48.5-51.5^{\circ}$ C/15 mmHg, n_D^{20} 1.4658. Anal. Found: B, 8.62; C, 58.19; H, 7.45. BC₆H₉O₂ calcd: B, 8.72; C, 58.14; H, 7.32%.

IR(film): ν (cm⁻¹) 639sh, 667m, 825w, 863w, 900m, 929m, 992s, 1005s, 1043m, 1059m, 1140m, 1212s, 1252s, 1315sh, 1349s, 1408sh, 1427s, 1465s, 1495s, 2121w, 2892s, 2952s, 3299s. ¹H NMR (CDCl₃) δ (ppm) 0.75 (t, 2H, J 7.5 Hz, BCH₂); 1.63 (q, 2H, J 7 Hz, CCH₂C); 2.40 (s, 1H, C \equiv CH); 3.60, 3.72 (tt, 2H, J 6.5 Hz, OCH₂); 4.26 (d, 2H, J 3 Hz, OCH₂C \equiv C). ¹¹B NMR (CDCl₃): δ (ppm) 37.04.

2-(2-Methoxyethoxy)-1, 2-oxaborolane(X)

Starting from V and 2-methoxyethanol (1:1, 100 mmol), 9.6 g (66.7%) of X was prepared as described above, b.p. $59-62^{\circ}$ C/10 mmHg, $n_{\rm D}^{20}$ 1.4420. Anal. Found: B, 7.43; C, 50.25; H, 8.76. BC₆H₁₃O₃ Calcd: B, 7.51; C, 50.05; H, 9.10%.

IR(film): ν (cm⁻¹) 745w, 843m, 865w, 900m, 993m, 1025m, 1076m, 1101m, 1136s, 1203s, 1255m, 1325s, 1357s, 1428s, 1459s, 1495s, 2887s, 2943s. ¹H NMR(CDCl₃): δ (ppm) 0.68 (tt, 2H, J 7.5 Hz, BCH₂); 1.57 (qq, 2H, J 7 Hz, CCH₂C); 3.11 (s, 3H, OCH₃); 3.26 (t, 2H, J 6 Hz, COCH₂); 3.65, 3.76 (tt, 4H. J 6.5 Hz, BOCH₂). ¹¹B NMR (CDCl₃): δ (ppm) 36.40.

2-(2-Ethoxyethoxy) (XI), 2-(2-ethoxy-2-ethoxyethoxy)- (XII) and 2-(2-ethoxy-2-ethoxyethoxy)-1,2-oxaborolanes (XIII)

XI, XII and XIII were prepared as described above, starting from V, in 74.6, 81.2 and 86.7% yields, respectively. The IR and ^{1}H NMR spectra of these compounds are very similar. XI: Anal. Found: B, 6.80, 7.03. BC₇H₁₅O₃ calcd: B, 6.84%. XII: Anal. Found: 5.61, 5.88. BC₉H₁₉O₄ calcd:, B, 5.35%. XIII: Anal. Found: 4.51, 4.53. BC₁₁H₂₃O₅ calcd. B, 4.39%.

IR(film) XI: ν (cm⁻¹) 746w, 825w, 900w, 939w, 991m, 1022m, 1064m, 1121s, 1202s, 1251s, 1317s, 1346s, 1425s, 1491s, 2886s, 2973s. XII: ν (cm⁻¹) 740vw, 823w, 900w, 946w, 989m, 1020m, 1071m, 1113s, 1203m, 1248m, 1316s, 1347s, 1425s, 1492m, 2886s, 2966s. XIII: ν (cm⁻¹) 900w, 937w, 989m, 1020m, 1110m, 1124s, 1205m, 1250m, 1290m, 1313s, 1348s, 1424s, 1493m, 2883s, 2961s. ¹H NMR(CCl₄) XI: δ (ppm) 0.79 (t, 2H, *J* 7.5 Hz, a), 1.07 (t, 3H, *J* 7 Hz, f); 1.82 (q, 2H, *J* 8 Hz, b); 3.30, 3.43 (m, 4H, e); 3.76, 3.88 (tt, 4H, *J* 6.5 Hz, c, d). XII: δ (ppm) 0.79 (t, 2H, *J* 7 Hz, a), 1.07 (t, 3H, *J* 7 Hz, f); 1.81 (q, 2H, *J* 7 Hz, b); 3.32, 3.43 (m, 8H, e); 3.76, 3.88 (tt, 4H, *J* 6.5 Hz, c, d). XIII: δ (ppm) 0.79 (t, 2H, *J* 7 Hz, a); 1.07 (t, 3H,

J 7 Hz, f); 1.81 (q, 2H, J 7 Hz, b); 3.28, 3.43 (m, 12H, e); 3.76, 3.88 (tt, 4H, J 6.5 Hz, c, d).

$$n = 0, 1, 2$$

2-(2-Chloroethoxy)- (XIV) and 2-(2-bromoethoxy)-1,2-oxaborolane (XV)

XIV or XV was readily obtained in good yield from procedure A as described above, but starting from V and 2-chloroethanol or 2-bromoethanol (1:1.2). XIV: Yield, 82.9%; b.p. $66-67^{\circ}$ C/15 mmHg; n_D^{20} 1.4647. Anal. Found: B, 7.13; C, 40.34; H, 6.76; Cl, 23.36. BC₅H₁₀O₂Cl, calcd.: B, 7.29; C, 40.47; H, 6.79; Cl, 23.89%. XV: Yield, 78.3%; b.p. $82.5-84^{\circ}$ C/15 mmHg; n_D^{20} 1.4910. Anal. Found: C, 31.33; H, 5.15; Br, 41.46. BC₅H₁₀O₂Br calcd: C, 31.14; H, 5.23; Br, 41.43%.

IR(film) XIV: ν (cm⁻¹) 663s, 740m, 815m, 895m, 984s, 1013s, 1065sh, 1076s, 1136m, 1201s, 1249s, 1355s, 1421s, 1492s, 2885s, 2953s. XV: ν (cm⁻¹) 565w, 668w, 741w, 816w, 859vw, 900m, 940w, 988s, 1028s, 1067s, 1139m, 1209s, 1285s, 1336sh, 1363s, 1428s, 2892s, 2965s. ¹H NMR (CDCl₃) XIV: δ (ppm) 0.83 (m, 2H, a); 1.68 (q, 2H, J 7 Hz, b); 3.50 (t, 2H, J 6 Hz, e); 3.89 (tt, 4H, J 5.5 Hz, c, d). XV: δ (ppm) 0.98 (m, 2H, a); 1.83 (q, 2H, J 7 Hz, b); 3.52, 3.85 (m, 4H, d, c); 4.15 (t, 2H, J 6 Hz, e) ¹¹B NMR (CDCl₃) XIV: δ (ppm) 37.37 ppm; XV: δ (ppm) 37.64.

$$b = OCH_2CH_2X$$

$$X = CI$$

2-Benzyloxy- (XVI), 2-(2-phenylethoxy)- (XVII) and 2-(2-phenypropoxy)-1,2-oxaboro-lane (XVIII)

Starting from V and benzyl alcohol, XVI was prepared as described above in 75.0% yield, b.p. 76° C/0.3 mmHg, $n_{\rm D}^{20}$ 1.5242. Anal. Found: B, 5.88; C, 68.39; H, 7.29. BC₁₀H₁₃O₂ calcd: B, 6.14; C, 68.24; H, 7.44%.

IR(film): ν (cm⁻¹) 699s, 731s, 824m, 856w, 900m, 983s, 1027s, 1055m, 1080m, 1136m, 1207s, 1252s, 1325sh, 1353s, 1425s, 1453s, 1496s, 1583w, 1607w, 1713w, 1800w, 1868w, 1943w, 2883s, 2952s, 3028m, 3061m, 3085w. ¹H NMR(CDCl₃): δ (ppm) 0.57 (t, 2H, J 7.5 Hz, a); 1.60 (q, 2H, J 7 Hz, b); 4.13 (t, 2H, J 6.5 Hz, c); 5.36 (s, 2H, d); 8.13 (m, 5H, e).

XVII and XVIII were obtained in good yields from the reactions of V with the relevant alcohols. XVII: Yield, 87.8%; B.p. $101-104^{\circ}$ C/3 mmHg; n_D^{20} 1.5181. Anal. Found: B, 5.61, 5.62. $B_{11}H_{15}O_2$ calcd: B, 5.69%. XVIII: Yield, 85.6%; B.p. $115-117^{\circ}$ C/3 mmHg; n_D^{20} 1.5129. Anal. Found: B. 5.21, 5.34. $B_{12}H_{17}O_2$ calcd: B. 5.30%.

IR(film) XVII: ν (cm⁻¹) 671m, 703s, 753s, 834w, 909m, 993s, 1031s, 1060s, 1140m, 1200s, 1252s, 1352s, 1422s, 1455s, 1481sh, 1497s, 1586w, 1635m, 1752vw, 1826w, 1871w, 1946, 2887sh, 2943s, 3013s, 3057m. ¹H NMR(CDCl₃) XVII: δ (ppm) 0.77 (t, 2H, J 7.5 Hz, a); 1.81 (q, 2H, J 7 Hz, b); 2.82 (t, 2H, J 6.5 Hz, e); 3.91, 4.02 (tt, 4H, c, d); 7.16 (m, 5H, f). XVIII: δ (ppm) 0.73 (t, 2H, J 8 Hz, a); 1.74 (q, 4H, J 7.5 Hz, b); 2.56 (t, 2H, J 7.5 Hz, e); 3.71, 3.81 (tt, 4H, J 6 Hz, c, d); 7.03 (m, 5H, f). ¹¹B NMR(CDCl₃) XVII: δ (ppm) 35.71.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} a \\ b \\ \\ \end{array} \begin{array}{c} \begin{array}{c} B \\ \end{array} \begin{array}{c} O \\ \end{array} \begin{array}{c} C \\ \end{array} \begin{array}{c} B \\ \end{array} \begin{array}{c} O \\ \end{array} \begin{array}{c} C \\ \end{array}$$

2-p-Methoxybenzyloxy-1,2-oxaborolane (XIX)

As described above, but starting from V and anisyl alcohol, XIX was prepared in 72.8% yield, b.p. $151-152^{\circ}$ C/10 mmHg, $n_{\rm D}^{20}$ 1.5303. Anal. Found: B, 5.11; C, 64.33; H, 7.09. BC₁₁H₁₅O₃ calcd: B, 5.25; C, 64.12; H, 7.34%.

IR(film) ν (cm⁻¹) 705w, 750sh, 763m, 824s, 853s, 903m, 937w, 985s, 1040s, 1115m, 1140m, 1179s, 1211s, 1211s, 1252s, 1355s, 1431s, 1515s, 1617s, 1764w, 1880w, 1996w, 2055w, 2839s, 2895sh, 2956s. ¹H NMR(CDCl₃): δ (ppm) 0.62 (t, 2H, *J* 7.5 Hz, BCH₂); 1.69 (q, 2H, *J* 7 Hz); 3.85 (s, 3H, OCH₃); 4.24 (t, 2H, *J* 6.5 Hz, OCH₂); 5.38 (s, 2H, OCH₂Ar); 7.63, 8.18 (m, 4H, Ar).

2-Phenoxy-1,2-oxaborolane (XX)

Starting from 12.6 g (100 mmol) of V and 9.4 g (100 mmol) of phenol, by the procedure described above 13.1 g (80.9%) of XX was prepared b.p. $94-95^{\circ}$ C/10 mmHg, n_D^{20} 1.5326. Anal. Found: B, 6.76; C, 67.25; H, 6.58. BC₉H₁₁O₂ calcd. B, 6.67; C, 66.73; H, 6.84%.

IR(film) ν (cm⁻¹) 505w, 615vw, 692s, 765s, 808m, 840m, 898m, 968sh, 988m, 1021m, 1069m, 1167m, 1219s, 1263s, 1312s, 1355s, 1395s, 1427s, 1492s, 1597vs, 1712vw, 1765vw, 1849vw, 1925vw, 2885s, 2952s, 3033m. ¹H NMR(CDCl₃): δ (ppm) 0.64 (t, 2H, J 7 Hz, BCH₂); 1.58 (q, 2H, J 7 Hz, CCH₂C); 4.18 (t, 2H, J 6.5 Hz, OCH₂); 7.76, 7.94 (m, 5H, Ph).

Partial hydrolysis of V

2,2'-Oxy-bis-1,2-oxaborolane (XXI)

The partial-hydrolysis product XXI was obtained in good yield from V and water (near 2:1 molar ratio) at 150-160 °C for 2 h. Allyl alcohol was distilled off under atmospheric pressure, and the residue was distilled under vacuum to give a glassy product, b.p. 115-116 °C/15 mmHg, in 50-78% yield. XXI is more sensitive to moisture in air. Anal. Found: 13.60-14.41. $B_2C_6H_{12}O_3$ calcd: 14.06%. MS: m/z M^+ , 154(w); M-15(s), M-42, cleavage of the ring; 87(s), 69(s); cleavage of exocyclic B-O bond, i.e. the ring $BC_3H_8O_2$ cation and BC_3H_6O cation [6].

IR(film): ν (cm⁻¹) 656w, 732w, 815w, 852w, 871w, 927w, 1017w, 1052m, 1132w, 1183m, 1229m, 1271s, 1345s, 1417s, 1479m, 1631vw, 2885sh, 2941s, 3393s. ¹H NMR(CDCl₃) δ (ppm) a,a' 0.87, 0.90 (tt, 4H, J 7 Hz); b,b' 1.77, 1.91 (qq, 4H, J 7 Hz); c,c' 3.88, 4.02 (tt, 4H, J 7 Hz).

$$b \underbrace{\downarrow o}_{C} B - O - B \underbrace{\downarrow o}_{O} b'$$

Reaction of 2-chloro-1,2-oxaborolane (XXII) with alcohol

The reaction of 3.5 g of XXII and 10.3 g n-butanol by distillation gave 2.4 g of I (51% yield).

As above, the reaction of XXII with ethylene glycol gave 2,2'-ethylenedioxy-bis-1,2-oxaborolane (XXXVII) in 75% yield.

Procedure B: Reaction of allylborane XXIII with alcohols

2-Ethoxy-1,2-oxaborolane (XXVI)

A 25-ml dry, nitrogen-filled round flask equipped with a side arm capped with a rubber septum, a magnetic stirring bar, a reflux condenser and a connecting tube attached to a bubbler was charged with 1.72 g (16 mmol) of XXIII. 10 ml (17 mmol) ethanol was added dropwise during 10 min, and the reaction mixture was heatted at $100\,^{\circ}$ C for 30 min. After the evolution of about 200 ml gas, distillation under vacuum gave 1.45 g (80%) of XXVI, b.p. $47-49\,^{\circ}$ C/54 mmHg, $n_{\rm D}^{20}$ 1.4228. Anal. Found: B, 9.26, 9.23. BC₅H₁₁O₂ calcd: 9.49%.

IR(film): ν (cm⁻¹) 471w, 617w, 661m, 738w, 818m, 858m, 883m, 988s, 1015s, 1044s, 1097s, 1132s, 1196s, 1271s, 1320s, 1367s, 1425s, 1487s, 2943s. ¹H NMR (CCl₄) δ (ppm) 0.83 (t, 2H, a); 1.18 (t, 3H, e); 1.86 (q, 2H, b); 3.93 (tt, 4H, c, d).

Procedure C: Reaction of borane agent XXIV with alcohols

2-n-Propoxy- (XXVII) and 2-iso-propoxy-1,2-oxaborolane (XXVIII)

A dry, nitrogen-filled 25-ml flask, equipped with a side arm capped with a rubber septum, a magnetic stirring bar, a reflux condenser and a connecting tube attached to a bubbler, was charged with 6.6 g (50 mmol) of XXIV. The flask was immersed in an ice-bath, 3.0 g (50 mmol) n-propanol was added dropwise at $0-5^{\circ}$ C during 1 h, and evolution of hydrogen took place immediately. After complete addition, the methyl sulfide was distilled off under atmospheric pressure. Then 1 ml of XXV was added and the mixture was heated at 140° C for 2.5 h. Distillation under vacuum gave 5.3 g (82.8%) of XXVII, b.p. $133-135^{\circ}$ C, n_D^{20} 1.4175.

Starting from XXIV and 2-propanol, XXVII was prepared as described above in 80% yield. B.p. 123–125°C, n_D^{20} 1.3978. XXVII: Anal. Found: B, 8.57. BC₆H₁₃O₃ calcd: B, 8.45% XXVIII: Anal. Found: B, 8.11. BC₆H₁₃O₃ calcd: B, 8.45%.

IR(film) XXVII: ν (cm⁻¹) 667m, 740w, 760w, 825w, 863w. 900m, 960m, 992m, 1028m, 1070m, 1102w, 1140w, 1204s, 1253s, 1330s, 1360s, 1380sh, 1435s, 1485m, 2800sh, 2965s. XXVIII: ν (cm⁻¹) 670m, 818w, 840w, 900w, 954s, 998w, 1032m, 1123s, 1174m, 1200m, 1252w, 1330s, 1380s, 1424s, 1470sh, 2855sh, 2950s.

¹H NMR(CCl₄) XXVII: δ (ppm) 0.82 (m, 2H, BCH₂); 0.92 (s, 3H, CCH₃); 1.36 (qq, 4H, (CCH₂C)₂); 3.59 (tt, 4H, (OCH₂)₂). XXVII: δ (ppm) 0.76 (t, 2H, J 7 Hz, BCH₂); 1.10 (d, 6H, C(CH₃)₂); 1.82 (m, 2H, CCH₂C); 3.91, 4.34 (m, 3H, OCH₂, OCHC₂).

The reaction of bis-1,2-oxaborolane XXV with trialkoxyboranes

With tributyl borate. In a 100-ml distillation flask was placed 20.0 g (102 mmol) of XXV and 23.0 g (100 mmol) of tirbutyl borate. The mixture was heated with stirring at $160-170\,^{\circ}$ C for 2 h. Distillation under vacuum gave I, 25.4 g (179%), b.p. $76-78\,^{\circ}$ C/40 mmHg, n_D^{20} 1.4366 (Lit. $70-73\,^{\circ}$ C/25 mmHg, n_D^{20} 1.4345 [2]).

With triallyl borate. Starting from 36.0 g (184 mmol) of XXV and 33.4 g (184 mmol) of triallyl borate, 32.8 g (142%) of V was prepared as described above, b.p. $53-55^{\circ}$ C/15 mmHg, n_D^{20} 1.4485 (Lit. 56° C/mmHg, n_D^{20} 1.4498[3]).

Procedure D: One-pot reaction of V with boranes and alcohols

A dry, two-necked, 50-ml flask fitted with a magnetic stirring bar, a rubber septum, and a reflux condenser leading to a bubbler, was flushed with nitrogen and immersed in an ice-bath. 12.6 g (50 mmol) of V and 5 ml of methyl sulfide were injected into the flask by hypodermic syringe. 10 ml (50 mmol) of BMS was injected slwoly into the well-stirred solution over a period of 2 h. Then 50 mmol of the alcohol was added slowly with another syringe through the inlet tube to the well-stirred mixture. The ice-water bath was removed and the stirring was continued for 1 h until evolution of gas has ceased. Then the solvent was evaporated off by aaspiration and the residue was heated at 160 °C for 2 h, and distilled to give the 2-alkyloxy-1,2-oxaborolane. The examples, XXIX and XXX, were prepared in 85% and 71% yields, respectively.

2-sec-Butoxy- (XXIX) and 2-tert-butoxy-1,2-oxaborolane (XXX)

XXIX: Anal. Found: B, 7.37. $BC_7H_{15}O_3$ calcd: B, 7.61%. Anal. Found: B, 7.69. $BC_7H_{15}O_3$ XXX calcd: B, 7.61%.

IR(film) XXIX: ν (cm⁻¹) 657m, 728vw, 818w, 853w, 902m, 963sh, 983s, 1015s, 1104m, 1118s, 1162m, 1193s, 1245s, 1313s, 1414s, 1486s, 2339vw, 2852sh, 2891sh, 2944s, 3413w. XXX: ν (cm⁻¹) 668m, 904m, 973w, 1023m, 1038m, 1184s, 1241m, 1257m, 1345s, 1360s, 1405s, 1439m, 1457m, 1490m, 2882sh, 1955s. ¹H NMR (CCl₄) XXIX: δ 0.80 (t, 2H, J 7.5 Hz, BCH₂); 0.90, 1.06 (m, 6H, (CH₃)₂); 1.10–1.60, 1.82 (m, 4H, (CCH₂C)₂); 3.94 (t, 2H, J 6.5 Hz, OCH₂); 4.15 (m, 1H, OCHC₂). XXIX: δ (ppm) 0.79 (t, 2H, J 8 Hz, BCH₂); 1.30 (s, 9H, C(CH₃)₃); 1.82 (q, 2H, J 7 Hz, CCH₂C); 3.96 (t, 2H, J 6.5 Hz, OCH₂).

2-iso-Butoxy-1,2-oxaborolane (XXXI)

XXXI was obtained in 76% yield by the procedure described above, but triethylamino-borane and an oil-bath (140°C) were used in place of BMS and the ice-bath, respectively.

XXXI: Anal: Found: B, 7.24. BC₇H₁₅O₃ calcd: B, 7.61%.

IR(film): ν (cm⁻¹) 659m, 817w, 856vw, 897m, 939w, 982s, 1129m, 1159m, 1191s, 1242s, 1310sh, 1345s, 1377s, 1404sh, 1421s, 2819sh, 2913s. ¹H NMR(CCl₄): δ (ppm) 0.82 (t, 2H, J 7.5 Hz, BCH₂); 0.90 (d, 6H, C(CH₃)₂); 1.10–1.16 (m, 1H, CCHO₂); 1.87 (q, 2H, J 7 Hz, CCH₂C); 3.55, 3.95 (m, 4H, (OCH₂)₂).

Bromination of V

2-(2,3-Dibromopropoxy)-1,2-oxaborolane (XXXIV)

A dry, nitrogen-filled 50-ml three-necked flask, equipped with a magnetic stirring bar, a thermometer, an addition funnel, a reflux condenser and a connecting tube attached to a bubbler, was charged with 12.6 g (100 mmol) of V and 10 ml of $\mathrm{CH_2Cl_2}$. The flask was immersed in an ice-bath. 16.9 g (100 mmol) of bromine was added dropwise to the solution at 0-5°C with stirring during 2.5 h. Stirring was then continued at room temperature for an additional hour. After removal of the solvent, the residue was heated at 120°C for 1 h and was then distilled under vacuum to give 19.7 g (69.0%) of XXXV. b.p. 96-98°C/1 mmHg, n_D^{20} 1.7424. Anal. Found: 3.79, 3.86. B, BC₆H₁₁O₂Br₂ calcd: 3.78%. IR(film): ν (cm⁻¹) 570m, 750w, 825w, 898w, 986s, 1020s, 1058m, 1110w, 1140m, 1204s, 1254s, 1323sh, 1358vs, 1420s, 1455w, 1493m, 2880s, 2952s. ¹H NMR(CCl₄): δ 0.99 (t, 2H, J 7.5 Hz, BCH₂); 2.01 (q, 2H, J 7.5 Hz, CCH₂C); 3.87 (m, 4H, (OCH₂)₂); 4.08, 4.30 (m, 3H, CHBrCH₂Br).

Procedure E: Reaction of V with diols

This procedure is similar to Procedure A. Representative examples (XXXVII, XLI and XLII) have been described previously [4].

2,2'-Polymethylenedioxy-bis-1,2-oxaborolanes (XXXVIII-XL)

The method for the preparation of XXXVII [4] was used: a dry 50 ml flask was charged with 6.29 g (50 mmol) of V and 25 mmol of polymethylenediol. The mixture was heated at 160–180 °C with stirring for 2h. Distillation under vacuum gives the highly viscous product (XXXVIII, XXXIX or XL) in about 85% yield.

XXXV: Anal. Found: B, 9.85; C, 51.09; H, 8.27. $B_2C_9H_{18}O_4$ calcd: C, 10.21; C, 51.03; H, 8.56%. XXXVII: Anal. Found: B, 9.27; C, 53.39; H, 8.61. $B_2C_{10}H_{20}O_4$ calcd: B, 9.57; C, 53.17; H, 8.92%. XXXVII: Found: B, 8.73; C, 54.95; H, 9.27. $B_2C_{11}H_{22}O_4$ calcd: B, 9.01; C, 55.07; H, 9.24%.

XXXVIII: IR(film): ν (cm⁻¹) 735m, 816w, 840w, 899w, 932m, 982m, 1028m, 1067m, 1096m, 1133m, 1186s, 1235s, 1275s, 1316sh, 1347s, 1429s, 1482s, 2885s, 2941s. ¹H NMR(CDCl₃): δ (ppm) 0.60 (tt, 4H, J 7.5 Hz, (BCH₂)₂); 1.43, 1.75 (m, 6H, (CCH₂C)₃); 3.62, 3.76 (m, 8H, (OCH₂)₄). ¹¹B NMR (CDCl₃): δ (ppm) 37.23.

2,2'-[(1-Ethyl-1,2-ethanediyl)bis(oxy)]- (XLIII) and 2,2'-[1-chloromethyl-1,2-ethanediyl)bis(oxy)]-bis-1,2-oxaborolane (XLIV)

Starting from 6.29 g (50 mmol) of V and 2.25 g (25 mmol) of 1,2-butanediol, 4.61 g (81.6%) of XLIII was prepared as described above, b.p. 111–113° C/3 mmHg, n_D^{20} 1.4531. Anal. Found: B, 9.48. $B_2C_{10}H_{20}O_4$ calcd: B, 9.57%.

Starting from 10 g (80 mmol) of V and 4.40 g (40 mmol) of 3-chloropropylenediol 8.30 g (84.3%) of XLIV was prepared as described above, b.p. 106-107 °C/0.1 mmHg, n_D^{20} 1.4722. Anal. Found: B, 8.64, 8.75. $B_2C_9H_{17}O_4Cl$ calcd: B, 8.78%.

IR(film): ν (cm⁻¹) 656w, 752m, 821m, 860w, 902m, 988m, 1026s, 1069sh, 1110w, 1139sh, 1180sh, 1235s, 1291w, 1320sh, 1355s, 1382s, 1424s, 1485s, 1587w, 2880sh, 2950s. ¹H NMR(CDCl₃): δ (ppm) 0.81 (tt, 4H, J 7 Hz, BCH₂); 1.64, 1.76 (qq, 4H, J 7 Hz, CCH₂C); 3.63, 4.07 (m, 9H, (OCH₂)₃, OCHCH₂Cl).

2,2'-(2,2'-Oxydiethoxy)- (XLV), 2.2'-(2,2'-thiodiethoxy)- (XLVI) and 2,2'-[2-butyne-1,4-diylbis(oxy)]-bis-1,2-oxaborolanes (XLVII).

Starting from V and diethylene glycol, di- β -hydroxyethyl sulfide and 2-butyne-1,4-diol, the bis-1,2-borolane derivatives XLV, XLVI and XLVII were prepared as described above in 84, 80 and 70% yields, respectively. XLV: Anal. Found: B, 8.77, 8.83. B₂H₁₀H₂₀O₅ calcd: B, 8.94%. XLVI: Anal. Found: B, 8.01, 7.91. B₂C₁₀H₂₀O₄S calcd: B, 8.38%. XLVII: Anal. Found: B, 8.81, 8.93. B₂C₁₀H₁₆O₄ calcd: B, 9.09%.

2,2'-(1,2-Phenylenedioxy)- (XLVIII), 2,2'-(1,3-phenylenedioxy)- (XLIX) and 2,2'-(1,4-phenylenedioxy)-bis-1,2-oxaborolanes (L)

The corresponding bis-1,2-oxaborolane derivative XLVIII, XLIX or L was prepared by treatment of V with catechol, resorcinol or hydroquinone in 2:1 molar ratio followed by distillation under vacuum. Their mass spectra have been reported and described in ref. 6. XLVIII: IR(film): ν (cm⁻¹) 740s, 811m, 864w, 899w, 917w, 931m, 1010sh, 1026w, 1069w, 1131m, 1186m, 1208m, 1241s, 1260sh, 1355s, 1385s, 1432s, 1471s, 1611w, 1757w, 1873w, 2032w, 2890sh, 2949s, 3061w. ¹H NMR(CDCl₃): δ (ppm) 0.33, 0.97 (tt, 4H, (BCH₂)₂); 1.51 (q, 4H, J 6.5 Hz, (CCH₂C)₂); 3.55 (tt, 4H, J 6 Hz, OCH₂); 6.66, 6.72 (m, 4H, Ph).

Anal. Found: B, 8.76; C, 58.68; H, 6.38. $B_2C_{12}H_{16}O_4$ calcd: B, 8.79; C, 58.62; H, 6.56%.

Acknowledgment

This work was supported by National Natural Science Foundation of China (No: 2870107).

References

- 1 R. Koester and G. Schomberg, Angew. Chem., 72 (1960) 567.
- 2 B.M. Mikhailov and V.A. Dorokhov, Izv. Akad. Nauk SSSR, Ser. Khim., (1965) 1661.
- 3 H. Ding and W. Zhou, Youji Huaxue (1981) 178. C. A. 95 (1981) 204021.
- 4 W. Zhou, G. Zhang and H. Ding, Youji Huaxue (1982) 19. C. A. 96 (1982) 181336.
- 5 W. Zhou, G. Zhang and H. Ding, in B.K. Teo (ed.), New Frontiers in Organometallic and Inorganic Chemistry, Science Press, Peking, 1984.
- 6 G. Fu, Y. Xu, W. Zhou and G. Zhang, J. Chin. Mass Spectrosc. Soc., 6 (1985) 3.
- 7 W. Zhou, W. Lo and S. Liang, unpublished work.
- 8 W. Zhou, H. Zhang, W. Lo, H. Ding and S. Liang, unpublished work.
- 9 W. Zhou, S. Liang and W. Lo, to be published.
- 10 Z. Zhu, Y. Fang, D. He, W. Zhou, G. Zhang and H. Ding, Acta Chim. Sinica, 43 (1985) 640. C.A. 105 (1986) 24299s.
- 11 Z. Zhu, W. Zhou, Y. Fang, D. He, G. Zhang and H. Ding, Acta Chim. Sinica, 43 (1985) 1212. C.A. 105 (1986) 133941r.
- 12 H. Ding, W. Zhou and J. Bai, Tetrahedron Lett., 28 (1987) 2599.