
SYNTHESIS OF FUNCTIONALIZED DIAZA(2,5)PYRIDINOPHANES¹⁾

Masaaki IWATA* and Hiroyoshi KUZUHARA The Institute of Physical and Chemical Research, Wako, Saitama 351

A general synthetic method of N^2 , $N^{(n+3)}$ -di-*p*-toluenesulfonyl-(n+9)hydroxy-(n+10)-hydroxymethyl-(n+9),(n+10)'-O-isopropylidene-2,(n+3)diaza[m](2,5)pyridinophanes [n=5,6,7,8,9,10; m=n+4] was established by the reaction of 5'-deoxy-2',5'-dichloro-3,4'-O-isopropylidenepyridoxine hydrochloride with N,N'-di-*p*-toluenesulfonyl- α , ω -alkanediamine disodium salt in N,N-dimethylformamide at 70-90 °C in fairly good yield depending on the chain length.

Our continued interest pertaining to modelize natural vitamin B_6 activity in the nonenzymic system that both catalysis and stereo-recognition functions are provided in a molecule has been partly achieved by the synthesis of (n+9)-hydroxy-(n+10)-formyl-2, (n+3)-dithia[m](2,5)pyridinophanes $[n=4,5,6,8; m=n+4]^{2}$ and its (n+10)-aminomethyl congener.³⁾ In these model compounds, the catalytic potency is comparable to that of pyridoxal^{2c)} while the recognition potency for substrate stereochemistry remains unsatisfactory as far as we have reported.^{2b,3)} The present study is initiated for the synthesis of new model compounds with improved stereo-recognition potency by introduction of nitrogen atoms into the bridged chain, which will provide more flexible molecular design than sulfur atoms, *e.g.* dynamic control of the transition state of catalysis through complexation and immobilization of the coenzyme on polymer support, as was exemplified by cryptands.⁴⁾

Instead of versatile methods reported so far to synthesize aza(2,5)pyridinophanes,⁵⁾ we gave the first priority to utilization of 5'-deoxy-2',5'-dichloro-3,4'-O-isopropylidenepyridoxine hydrochloride⁶⁾(<u>1</u>), as a precursor for the catalytic site, which was characterized by feasible synthesis,^{2b)} strong electrophilicity as HCl-free form,^{2a,b)} and facile conversion to the coenzymic functional groups.^{2b,3,7)} As a consequence of many trials using α,ω -alkanediamine as the first choice of the counter-part for further model-building, we eventually found a new generally applicable method to synthesize N², N⁽ⁿ⁺³⁾-di-p-toluenesulfonyl-(n+9)-hydroxy-(n+10)-hydroxymethyl-(n+9),(n+10)'-O-isopropylidene-2,(n+3)-diaza[m](2,5)pyridinophanes (<u>3</u>) [n=5,6,7,8,9,10; m=n+4]. In a typical procedure, <u>3c</u> was prepared as follows; for the preparation of N,N'di-p-toluenesulfonyl-1,6-hexanediamine disodium salt (<u>2c</u>), 0.5 g (1.18 mmol) of N,N'di-p-toluenesulfonyl-1,6-hexanediamine was added to 30 ml of ethanol containing 82 mg (3.56 mg-atom) of metal sodium followed by reflux for an hour and by evaporation of ethanol under reduced pressure. The resulting fine powder, <u>2c</u>, was mixed with 50 ml of N,N-dimethylformamide (DMF)⁸ and stirred, to which 0.352 g (1.18 mmol) of <u>1</u> in 20 ml of DMF⁹ was, then, added dropwise in the period of 3 h in an oil-bath (*ca*. 90 °C).¹⁰ After cooling, the brown reaction mixture was poured into 700 ml of water for precipitation, which was promoted by addition of *ca*. 10 g of sodium chloride (salting-out effect). The precipitate was collected by filtration followed by silica gel column chromatography (Merck silica gel 60, Art. 7734; eluent benzene-ethyl acetate (4 : 1 v/v)) to give <u>3c</u> (0.65 g), recryst. from ethanol as colorless crystals. All the spectral¹¹ and analytical data supported the structure.

The others were prepared likewise and the results obtained are summarized in Table, which demonstrate that yields are fairly dependent on the chain length: 2a (n=4) seems too short to couple <u>1</u> to give <u>3a</u>. Yield culminated in <u>2c</u> (n=6) and <u>2d</u> (n=7)(best fit length) followed by decreased gradually as the chain length becomes longer.

The present approach to the synthesis of $\underline{3}$ might provide a new method for the extended diazapyridinophane synthesis in general, because this approach is characterized by that (a) stable hydrochloride of dichloro-pyridine derivatives is used directly, (b) high-dilution preparation, commonly employed in cyclophane syntheses, is not required, and (c) versatile synthesis of $\underline{2}$, containing additional nitrogen atoms in between the methylene groups, is feasible⁴⁾ and, thus, desirable molecular design will be made possible.

Table.	Preparation of N ² ,N ⁽ⁿ⁺³⁾ -di-p-toluenesulfonyl-				
<pre>(n+9)-hydroxy-(n+10)-hydroxymethyl-(n+9),(n+10)'-</pre>					
0-	isopropylidene-2,(n+3)-diaza[m](2,5)pyridinophanes				
[n	=5,6,7,8,9,10; m=n+4]				

Compnd	n	Ring size m	Isolated yield/% *	mp/°C
<u>3a</u>	4	8	0	
<u>3b</u>	5	9	18	245 — 246 (decomp)
<u>3c</u>	6	10	90	224 — 225
<u>3d</u>	7	11	95	224 — 226
<u>3e</u>	8	12	76	208 - 209.5
<u>3f</u>	9	13	60	159 - 160
<u>3g</u>	10	14	43	141 - 143
*				

not optimized

References

- 1) Partly reported at the 44th Autumn Annual Meeting of the Chemical Society of Japan, October 13th, 1981; Abstr. No. 2H27.
- 2)(a) M. Iwata, H. Kuzuhara, and S. Emoto, Chem. Lett., <u>1976</u>, 983. (b) H. Kuzuhara,
 M. Iwata, and S. Emoto, J. Am. Chem. Soc., <u>99</u>, 4173 (1977). (c) M. Iwata and H.
 Kuzuhara, Chem. Lett., <u>1981</u>, 5.
- 3) H. Kuzuhara, T. Komatsu, and S. Emoto, Tetrahedron Lett., 1978, 3563.
- 4) B. Dietrich, M. W. Hosseini, J. M. Lehn, and R. B. Sessions, J. Am. Chem. Soc., <u>103</u>, 1282 (1981).
- 5) G. R. Newkome, J. D. Sauer, J. M. Roper, and D. C. Hager, Chem. Revs., <u>77</u>, 513 (1977).
- 6) This salt is directly derived by the reaction of 2'-hydroxy-3,4'-Oisopropylidene-pyridoxine^{2b)} with thionyl chloride in benzene at ambient temperature; recryst. from acetone, as colorless crystals; mp 143 °C (decomp). Found: C, 44.40; H, 4.66; N, 4.67; Cl, 35.50%. Calcd for C₁₁H₁₄O₂NCl₃: C, 44.24; H, 4.73; N, 4.69; Cl, 35.62%. IR (KBr disc) v 2030, 1950, 1540, 1310, 1285, 1050, 840, and 725 cm⁻¹ as strong characteristic absorption bands.
- 7) M. Iwata, Bull. Chem. Soc. Jpn., <u>54</u>, 2835 (1981).

- 8) Solubility of the disodium salt (2) into (hot) ethanol or DMF is independent of the chain length; soluble into both hot solvents, n = 4, 5, 7, 9; insoluble into both hot solvents, n = 6, 8; soluble into hot ethanol but insoluble into hot DMF, n = 10. However, the solubility does not seem to affect the final product yield.
- 9) The dichloro-pyridine hydrochloride $(\underline{1})$ was found to be favorably soluble into DMF.
- 10) Rapid addition and higher temperature resulted in lower yield of $\underline{3c}$.
- 11) Of spectral data, ¹HNMR spectra were particularly interested in relation to the restricted rotation depending on the chain length in comparison with those of the preceding dithia-congeners.^{2a)} The significant features and the analysis of ¹HNMR will be reported elsewhere in due course of time.

(Received September 11, 1981)