

Journal of Fluorine Chemistry 74 (1995) 1-7

Fluoro organics: synthesis of novel fluorinated 4-oxo-4*H*-pyrido[3',2':4,5]furo[3,2-*d*]-1,3-oxazines and their reactions $\stackrel{\text{trans}}{\approx}$

A. Chandra Sheker Reddy, B. Narsaiah, R.V. Venkataratnam *

Indian Institute of Chemical Technology, Hyderabad 500007, India

Received 12 May 1994; accepted 30 December 1994

Abstract

Novel fluorinated 4-oxo-4*H*-pyrido[3',2':4,5]furo[3,2-*d*]-1,3-oxazines have been synthesised from 2-carbethoxy-3-amino-4-trifluoromethyl-6-aryl-substituted furo[2,3-*b*]pyridines via intermediates such as 2-carboxy-3-amino-4-trifluoromethyl-6-aryl-substituted furo[2,3*b*]pyridines and 2-carboxy-3-trifluoroacetylamino-4-trifluoromethyl-6-aryl-substituted furo[2,3-*b*]pyridines. The CF₃ group induces changes in the reactivity in the molecule and the consequent regioselective attack of nucleophiles on the oxazine ring have been studied and utilized for mechanistic interpretation.

Keywords: Fluoro organics; Synthesis; Fluorinated oxopyridofuro-oxazines: NMR spectroscopy; IR spectroscopy; Mass spectrometry

1. Introduction

In continuation of our work on the synthesis of fluorinated heterocycles [1-4] of biological interest, our attention has been attracted towards the synthesis of pyrido-[3',2':4,5]furo[3,2-d]-1,3-oxazines by utilizing furo-[2,3-b]pyridines (1) [4] having two active functional groups *ortho* to each other.

2. Experimental details

2.1. General

Melting points were determined in open glass capillaries on a Mettler FP51 melting point apparatus and are uncorrected. ¹H NMR spectra were recorded on a Varian Gemini (200 MHz) spectrometer with TMS as internal standard. IR spectra were recorded on a Pye–Unicam SP3-200 infrared spectrometer. Mass spectra were recorded on a VG Micromass 7070H instrument. Elemental analyses were carried out on a Perkin-Elmer 240B apparatus.

2.2. Starting materials

The 2-carbethoxy-3-amino-4-trifluoromethyl-6-aryl-substituted furo[2,3-b] pyridines were prepared according to the reported procedure [4]. All other reagents were obtained from commercial sources and employed as supplied.

2.3. Preparation of 2-carboxy-3-amino-4-trifluoromethyl-6aryl-substituted furo[2,3-b]pyridines (**2a-d**): general procedure

The 2-carbethoxy-3-amino-4-trifluoromethyl-6-aryl-substituted furo[2,3-b]pyridines (0.001 mol) were suspended in potassium hydroxide solution (10%, 10 ml) and heated to reflux for 2 h at 100 °C with stirring. The reaction mixture was cooled to room temperature, diluted with water and neutralised with concentrated hydrochloric acid until acidic to litmus paper. The separated solid product was filtered, washed with cold water and dried. The dried product was purified by washing three times with n-hexane.

2-Carboxy-3-amino-4-trifluoromethyl-6-phenyl furo[2,3b]pyridine (**2a**): yield, 0.272 g (84.5%); m.p. 156.8 °C. ¹H NMR (DMSO- d_6) δ : 5.8 (br., s, 2H, NH₂); 7.20 (s, 1H, H– C(5)); 7.25 (d, 2H, aromatic H); 7.55 (m, 3H, aromatic H); 10.9 (s, 1H, -COOH) ppm. IR (KBr) (cm⁻¹): 3300–3650; 1720. MS M⁺, m/z: 322 (M⁺, base peak); 304 (M⁺ - H₂O); 278 (M⁺-CO₂); 248 (278 - CH₂O); 229

^{*} IICT Communication No. 3398.

^{*} Corresponding author.

(248 - F); 179 $(248 - CF_3)$; 77 (C_6H_5) . Analysis: Found for $C_{15}H_9F_3N_2O_3$: C, 55.98; H, 2.94; N, 8.73%. Calculated: C, 55.91; H, 2.81; N, 8.69%.

2-Carboxy-3-amino-4-trifluoromethyl-6-*p*-tolyl furo[2,3b]pyridine (**2b**): yield, 0.305 g (90.8%); m.p. 178.2 °C. ¹H NMR (DMSO- d_6) δ : 2.45 (s, 3H, CH₃); 5.37 (br., s, 2H, NH₂); 7.32 (d, 2H, aromatic H); 7.95 (s, 1H, H–C(5)); 8.05 (d, 2H, aromatic H); 10.93 (s, 1H, –COOH) ppm. IR (KBr) (cm⁻¹): 3250–3600; 1728. MS M⁺, *m*/*z*: 336 (M⁺, base peak); 318 (M⁺ – H₂O); 292 (M⁺ – CO₂); 262 (292 – CH₂O); 243 (262 – F); 193 (262 – CF₃). Analysis: Found for C₁₆H₁₁F₃N₂O₃: C, 57.17; H, 3.32; N, 8.42%. Calculated: C, 57.15; H, 3.29; N, 8.33%.

2-Carboxy-3-amino-4-trifluoromethyl-6-*p*-anisyl furo-[2,3-*b*]pyridine (**2c**): yield, 0.301 g (85.6%); m.p. 163.1 °C. ¹H NMR (DMSO- d_6) & 3.84 (s, 3H, OCH₃); 5.35 (br., s, 2H, NH₂); 7.30 (d, 2H, aromatic H); 7.92 (s, 1H, H– C(5)); 8.0 (d, 2H, aromatic H); 10.91 (s, 1H, –COOH) ppm. IR (KBr) (cm⁻¹): 3250–3600; 1728. MS M⁺, *m/z*: 352 (M⁺, base peak); 334 (M⁺ – H₂O); 308 (M⁺ – CO₂); 278 (308 – CH₂O); 249 (278 – F); 209 (278 – CF₃). Analysis: Found for C₁₆H₁₁F₃N₂O₄: C, 54.61; H, 3.18; N, 7.98%. Calculated: C, 54.55; H, 3.14; N, 7.95%.

2-Carboxy-3-amino-4-trifluoromethyl-6-*p*-chlorophenyl furo[2,3-*b*]pyridine (**2d**): yield, 0.310 g (87.3%); m.p. 157.7 °C. ¹H NMR (DMSO-*dC*₆) δ : 5.40 (br., s, 2H, NH₂); 7.50 (d, 2H, aromatic H); 8.0 (s, 1H, H–C(5)); 8.15 (d, 2H, aromatic H); 11.02 (s, 1H, –COOH) ppm. IR (KBr) (cm⁻¹): 3200–3600; 1720. MS M⁺, *m/z*: 356 (M⁺, base peak); 338 (M⁺ – H₂O); 312 (M⁺ – CO₂); 282 (312 – CH₂O); 263 (282 – F); 247 (282 – Cl); 228 (247 – F). Analysis: Found for C₁₅H₈ClF₃N₂O₃: C, 50.56; H, 2.31; N, 7.88%. Calculated: 50.51; H, 2.26; N, 7.85%.

2.4. Preparation of 2-carboxy-3-trifluoroacetylamino-4trifluoromethyl-6-aryl-substituted furo[2,3-b]pyridines (4a-c): general procedure

The 2-carboxy-3-amino-4-trifluoromethyl-6-aryl-substituted furo[2,3-b] pyridines (0.001 mol) were taken up in trifluoroacetic anhydride (4 ml) when the reaction mixture became homogeneous and solid then separated. The resultant reaction mixture after refluxing for 2 h at 40 °C, i.e. at the boiling point of trifluoroacetic anhydride, was cooled with ice water and poured into crushed ice. The product was filtered washed with water and dried.

2-Carboxy-3-trifluoroacetylamino-4-trifluoromethyl-6phenyl furo[2,3-*b*] pyridine (**4a**): yield, 0.353 g (84.6%); m.p. 240.2 °C. ¹H NMR (DMSO- d_6) δ : 7.55 (m, 3H, aromatic H); 9.20 (s, 1H, NH); 8.15 (s, 1H, H–C(5)); 8.17 (d, 2H, aromatic H); 10.95 (s, 1H, –COOH) ppm. IR (KBr) (cm⁻¹): 3250–3570; 1745. MS M⁺, *m/z*: 418 (M⁺, base peak); 374 (M⁺ – CO₂); 349 (M⁺ – CF₃); 331 (349 – H₂O); 305 (349 – CO₂); 69 (CF₃). Analysis: Found for C₁₇H₈F₆N₂O₄: C, 48.86; H, 1.98; N, 6.73%. Calculated: C, 48.80; H, 1.92; N, 6.69%. 2-Carboxy-3-trifluoroacetylamino-4-trifluoromethyl-6*p*tolyl furo[2,3-*b*] pyridine (**4b**): yield, 0.397 g (92.1%); m.p. 244.7 °C. H NMR (DMSO-*d*₆) δ : 2.45 (s, 3H, CH₃); 7.36 (d, 2H, aromatic H); 9.17 (s, 1H, NH); 8.07 (d, 2H, aromatic H); 8.10 (s, 1H, H–C(5)); 10.95 (s, 1H, –COOH) ppm. IR (KBr) (cm⁻¹); 3200–3600; 1740. MS M⁺, *m*/*z*: 432 (M⁺); 414 (M⁺ – H₂O); 388 (M⁺ – CO₂, base peak); 345 (M⁺ – CF₃); 319 (M⁺ – CF₃ and CO₂); 69 (CF₃). Analysis: Found for C₁₈H₁₀F₆N₂O₄: C, 50.13; H, 2.36; N, 6.51%. Calculated: C, 50.00; H, 2.31; N, 6.48%.

2-Carboxy-3-trifluoroacetylamino-4-trifluoromethyl-6-*p*chlorophenyl furo[2,3-*b*]pyridine (4c): yield, 0.373 g (82.6%); m.p. 227.1 °C. ¹H NMR (DMSO-*d*₆) δ : 7.61 (d, 2H, aromatic H); 9.22 (s, 1H, NH); 8.21 (s, 1H, H–C(5)); 8.28 (d. 2H, aromatic H); 10.95 (s, 1H, –COOH) ppm. IR (KBr) (cm⁻¹): 3250–3510; 1745. MS M⁺, *m*/*z*: 452 (M⁺, base peak); 434 (M⁺ – H₂O); 408 (M⁺ – CO₂); 339 (M⁺ – CF₃ and CO₂); 311 (339 – CO); 304 (339 – Cl); 111 (C₆H₄Cl); 69 (CF₃). Analysis: Found for C₁₇H₇ClF₆N₂O₄: C, 45.16 H, 1.18; N, 6.22%. Calculated: C, 45.10; H, 1.55; N, 6.18%.

2.5. Preparation of 2,7-disubstituted-9-trifluoromethyl-4oxo-4H-pyrido[3',2':4,5]furo[3,2-d]-1,3-oxazines (**3a–c** and **5a–c**): general procedure

The 2-carboxy-3-amino-4-trifluoromethyl-6-aryl-substituted furo[2,3-b]pyridines (0.001 mol) (for compounds 3a-c) and 2-carboxy-3-trifluoroacetylamino-4-trifluoromethyl-6-aryl-substituted furo[2,3-b]pyridines (0.001 mol) (in the case of compounds 5a-c) were taken up in acetic anhydride (4 ml), heated to 110 °C and stored for 2 h with stirring. The reaction mixture was cooled to room temperature and poured into crushed ice. The separated solid product was filtered, washed with cold water and dried.

2-Methyl-7-phenyl-9-trifluoromethyl-4-oxo-4*H*-pyrido-[3',2':4,5]furo[3,2-*d*]-1,3-oxazine (**3a**): yield, 0.274 g (79.4%); m.p. 198.0 °C. ¹H NMR (CDCl₃) δ : 2.60 (s, 3H, CH₃-C(2)); 7.55 (m, 3H, aromatic H); 8.10 (d, 2H, aromatic H); 8.20 (s, 1H, H–C(8)) ppm. IR (CHCl₃) (cm⁻¹): 1770; 1590; 1370; 1120. MS M⁺, *m*/*z*: 346 (M⁺, base peak); 331 (M⁺ – CH₃); 302 (M⁺ – CO₂); 277 (M⁺ – CF₃); 69 (CF₃). Analysis: Found for C₁₇H₉F₃N₂O₃:C, 58.93; H, 2.63; N, 8.13%. Calculated: C, 58.90; H, 2.61; N, 8.09%.

2-Methyl-7-*p*-tolyl-9-trifluoromethyl-4-oxo-4*H*-pyrido-[3',2':4,5]furo[3,2-*d*]-1,3-oxazine (**3b**): yield, 0.335 g (93.3%); m.p. 238.0 °C. ¹H NMR (CDCl₃) δ : 2.45 (s, 3H, CH₃); 2.62 (s, 3H, CH₃-C(2)); 7.38 (d, 2H, aromatic H); 8.09 (s, 1H, H–C(8)); 8.15 (d, 2H, aromatic H) ppm. IR (CHCl₃) (cm⁻¹): 1765; 1590; 1370; 1125. MS M⁺, *m/z*: 360 (M⁺, base peak), 345 (M⁺ – CH₃); 316 (M⁺ – CO₂); 291 (M⁺ – CF₃); 69 (CF₃). Analysis: Found for C₁₈H₁₁F₃N₂O₃: C, 60.11; H, 3.09; N, 7.81%. Calculated: C, 60.00; H, 3.06; N, 7.77%.

2-Methyl-7-*p*-clorophenyl-9-trifluoromethyl-4-oxo-4*H*pyrido[3',2':4,5]furo[3,2-*d*]-1,3-oxazine (**3c**): yield, 0.329 g (86.8%); m.p. 231.0 °C. ¹H NMR (CDCl₃) δ : 2.62 (s, 3H, CH₃–C(2)); 7.53 (d, 2H, aromatic H): 8.15 (m, 1H, H–C(8); (2H, aromatic H) ppm. IR (CHCl₃) (cm⁻¹): 1770; 1580; 1370; 1120. MS M⁺ m/z: 380 (M⁺, base peak); 365 (M⁺ – CH₃); 336 (M⁺ – CO₂); 311 (M⁺ – CF₃); 69 (CF₃). Analysis: Found for C₁₇H₈ClF₃N₂O₃: C, 53.68; H, 2.17; N, 7.39%. Calculated: C, 53.60; H, 2.11; N, 7.35%.

2,9-Bis(trifluoromethyl)-7-phenyl-4-oxo-4*H*-pyrido-[3',2':4,5]furo[3,2-*d*]-1,3-oxazine (**5a**): yield, 0.292 g (73.2%); m.p. 215.0 °C. ¹H NMR (CDCl₃) δ : 7.6 (m, 3H, aromatic H); 8.2 (m, 2H, aromatic H); 8.29 (s, 1H, H–C(8)) ppm. IR (CHCl₃) (cm⁻¹): 1800; 1610; 1360; 1170. MS M⁺, *m/z*: 400 (M⁺, base peak); 381 (M⁺-F); 331 (M⁺-CF₃); 323 (M⁺-C₆H₅); 77 (C₆H₅); 69 (CF₃). Analysis: Found for C₁₇H₆F₆N₂O₃: C, 51.13; H, 1.56: N. 6.71%. Calculated: C, 51.00; H, 1.51; N, 6.99%.

2,9-Bis(trifluoromethyl)-7-*p*-tolyl-4-oxo-4*H*-pyrido-[3',2':4,5]furo[3,2-*d*]-1,3-oxazine (**5b**): yield, 0.364 g (88.0%); m.p. 222.0 °C. ¹H NMR (CDCl₃) δ : 2.51 (s, 3H, CH₃); 7.40 (d, 2H, aromatic H); 8.12 (d, 2H, aromatic H); 8.25 (s, 1H, H–C(8)) ppm. IR (CHCl₃) (cm⁻¹): 1810; 1605; 1360; 1170. MS M⁺, *m*/*z*: 414 (M⁺, base peak); 399 (M⁺ – CH₃); 395 (M⁺ – F); 345 (M⁻ – CF₃); 323 (M⁺ – C₆H₄CH₃); 69 (CF₃). Analysis: Found for C₁₈H₈F₆N₂O₃: C, 52.14; H, 1.98; N, 6.79%. Calculated: C. 52.10; H, 1.94; N, 6.76%.

2,9-Bis(trifluoromethyl)-7-*p*-chlorophenyl-4-oxo-4*H*pyrido[3',2':4,5]furo[3,2-*d*]-1,3-oxazine (**5c**): yield, 0.401 g (92.6%); m.p. 181.0 °C. ¹H NMR (CDCl₃) δ : 7.49 (d, 2H, aromatic H); 8.15 (d, 2H, aromatic H); 8.23 (s, 1H, H– C(8)) ppm. IR (CHCl₃) (cm⁻¹): 1810; 1615; 1365; 1165. MS M⁺, *m*/*z*: 434 (M⁺, base peak); 415 (M⁺ – F); 365 (M⁺ – CF₃); 323 (M⁺ – C₆H₄Cl); 69 (CF₃). Analysis: Found for C₁₇H₅ClF₆N₂O₃: C, 46.94; H, 1.18; N, 6.49%. Calculated: C, 46.90; H, 1.15; N, 6.44%.

2.6. Preparation of 2-piperidinoyl-3-acetylamino-4-trifluoromethyl-6-aryl-substituted furo[2,3-b]pyridines (**6a**c): general procedure

Compounds **3a–c** (0.003 mol) were dissolved in toluene (8 ml) and piperidine (0.3 ml) was added. The reaction mixture was refluxed for 4 h with stirring at 110 °C. The toluene was removed under vacuum and the residue washed repeatedly with n-hexane to remove excess piperidine. The separated solid products (**6a–c**) were dried.

2-Piperidinoyl-3-acetylamino-4-trifluoromethyl-6-phenyl furo[2,3-*b*]pyridine (**6a**): yield, 0.953 g (73.9%); m.p. 204.5 °C. 'H NMR (CDCl₃) δ : 1.68 (s, 6H, -CH₂-CH₂-CH₂); 2.2 (s, 3H, COCH₃): 3.4-3.7 (br, d, 4H, N $< \frac{CH_2}{CH_2}$):

7.2 (d, 2H, aromatic H); 7.75 (m, 2H, aromatic H, 1H, H– C(5)); 8.65 (s, 1H, NH) ppm. IR (KBr) (cm⁻¹): 3200; 1690; 1600; 1260. MS M⁺, m/z: 431 (M⁺); 278 (M⁺ - N $\langle \rangle$, CO); 84 (C₅H₁₀N, base peak); 77 (C₆H₅); 69 (CF₃). Analysis: Found for $C_{22}H_{20}F_3N_3O_3$: C, 60.90; H, 4.08; N, 9.10%. Calculated: C, 61.25; H, 4.67; N, 9.74%.

2-Piperidinoyl-3-acetylamino-4-trifluoromethyl-6-*p*-tolyl furo[2,3-*b*]pyridine (**6b**): yield, 1.2 g (91.0%); m.p. 211.5 °C. ¹H NMR (CDCl₃) δ : 1.74 (s, 6H, -CH₂-CH₂-CH₂); 2.25 (s, 3H, CH₃); 2.45 (s, 3H, COCH₃); 3.6–3.7 (br., d, 4H, N $< \frac{CH_2-}{CH_2-}$); 7.2 (d, 2H, aromatic H); 7.87 (m, 2H, aromatic H and 1H, H–C(5)); 8.25 (s, 1H, NH) ppm. IR (KBr) (cm⁻¹); 3250; 1700; 1610; 1260. MS M⁺, *m*/*z*: 445 (M⁺); 403 (M⁺ – CH₂CO); 320 (403 – N<); 292 (320 – CO); 84 (C₅H₁₀N, base peak). Analysis: Found for C₂₃H₂₂F₃N₃O₃: C, 61.92; H, 4.45; N, 9.09%. Calculated: C, 62.01; H, 4.97; N, 9.43%. 2-Piperidinoyl-3-acetylamino-4-trifluoromethyl-6-*p*-

chlorophenyl furo[2,3-*b*]pyridine (**6**c): yield, 1.20 g (86.8%); m.p. 197.2 °C. ¹H NMR (CDCl₃) δ : 1.63 (s, 6H, -CH₂-CH₂-CH₂); 2.16 (s, 3H, COCH₃); 3.48-3.70 (br., d, 4H. N $\begin{pmatrix} CH_{2^-} \\ CH_{2^-} \end{pmatrix}$; 7.37 (d, 2H, aromatic H); 7.88 (d, 2H, aromatic H); 7.90 (s, 1H, H–C(5)); 8.28 (s, 1H, NH) ppm. IR (KBr) (cm⁻¹): 3230; 1700; 1600; 1250. MS M⁺, *m/z*: 465 (M⁺); 422 (M⁺ – COCH₃); 311 (422 – C₆H₄Cl); 84 (C₅H₁₀N, base peak). Analysis: Found for C₂₂H₁₉ClF₃N₃O₃: C. 56.54; H, 4.04; N, 9.09%. Calculated: C, 56.72; H, 4.11; N, 9.11%.

2.7. Preparation of 2-carbohydrazide-3-acetylamino-4trifluoromethyl-6-phenyl furo[2,3-b]pyridine (7)

Compound **3a** (0.13 g, 0.00034 mol) was dissolved in ethanol (12 ml) and hydrazine hydrate (5 ml) added. The reaction mixture was refluxed for 6 h while stirring, cooled and poured into crushed ice. The separated solid product was filtered, washed with water and dried. Yield, 0.105 g (82.3%); m.p. 153.8 °C. ¹H NMR (CDCl₃) δ : 2.81 (s, 3H, CH₃); 4.3 (br., s, 2H, N–NH₂); 5.09 (s, 1H, NHCOCH₃); 7.52 (m, 3H, aromatic H); 7.95 (s, 1H, H–C(5)); 8.1 (m, 2H, aromatic H) ppm. IR (KBr) (cm⁻¹): 3320; 1710; 1600; 1270. MS M⁺, *m*/*z*: 378 (M⁺); 336 (M⁺ – CH₂CO); 305 (336 – NHNH₂); 277 (305 – CO, base peak); 77 (C₆H₅); 69 (CF₃). Analysis: Found for C₁₇H₁₃F₃N₄O₃: C, 53.65; H, 3.28; N, 14.62%. Calculated: C, 53.97; H, 3.46; N, 14.80%.

2.8. Preparation of 2-methyl-3-amino-7-phenyl-9-trifluoromethyl-4-oxo-4H-pyrido[3',2':4,5]furo[3,2-d]-1,3pyrimidine (8) [4]

Compound 13 (0.3 g, 0.0007 mol) was dissolved in ethanol (20 ml) and hydrazine hydrate (4 ml) added. The reaction mixture was refluxed for 8 h with stirring, cooled and poured into crushed ice. The separated solid product was filtered, washed with water and dried. The product was characterised as compound 8. Yield, 0.126 g (50.1%); m.p. 243.0 °C.

2.9. Preparation of 2-carboxy-3(2-trifluoromethyl piperidinyl methyleneamino)-4-trifluoromethyl-6-aryl-substituted furo[2,3-b]pyridines (**9a–c**): general procedure

Compounds **5a–c** (0.0017 mol) were dissolved in toluenc (10 ml) and piperidine (0.3 ml) added. The reaction mixture was refluxed for 4 h with stirring at 110 °C. The toluene was removed under vacuum and the residue repeatedly washed with n-hexane to remove excess piperidine. The separated solid products **9a–c** were dried and purified by passing through a column of Al_2O_3 in CHCl₃.

2-Carboxy-3(2-trifluoromethyl piperidinyl methyleneamino)-4-trifluoromethyl-6-phenyl furo[2.3-b]pyridine (9a): yield, 0.624 g (75.8%); m.p. 202.2 °C. ¹H NMR (CDCl₃) δ : 1.73 (s, 6H, -CH₂-CH₂-CH₂); 3.55-3.75 (br., CH₂-

d, 4H, $N < CH_2^{-}$; 7.36 (d, 2H, aromatic H); 7.95 (m, 3H.

aromatic H, 1H, H–C(5)); 10.9 (s, 1H, –COOH) ppm. IR (KBr) (cm⁻¹): 3530–3220; 1730; 1640; 1220. MS M⁺, m/z: 485 (M⁺); 416 (M⁺ – CF₃); 84 (C₅H₁₀N, base peak); 77 (C₆H₅); 69 (CF₃). Analysis: Found for C₂₂H₁₇F₆N₃O₃: C, 54.70; H, 3.80; N, 8.80%. Calculated: C, 54.43; H, 3.53; N, 8.65%.

2-Carboxy-3(2-trifluoromethyl piperidinyl methyleneamino)-4-trifluoromethyl-6-*p*-tolyl furo[2,3-*b*]pyridine (**9b**): yield, 0.620 g (73.2%); m.p. 195.4 °C. ¹H NMR (CDCl₃) δ : 1.74 (s, 6H, -CH₂-CH₂-CH₂); 2.43, (s, 3H, CH₃); 3.54-3.80 (br., d, 4H, N $\langle CH_2^{--}$); 7.17 (d. 2H, aro-CH₂-); 7.17 (d. 2H, aro-

matic H); 7.83 (d, 2H, aromatic H); 7.98 (s, 1H, H–C(5)); 10.92 (s, 1H, –COOH) ppm. IR (KBr) (cm⁻¹): 3200; 1750; 1640; 1240. MS M⁺, m/z: 499 (M⁺); 430 (M⁺ – CF₃); 415 (430 – CH₃); 84 (C₅H₁₀N, base peak); 69 (CF₃). Analysis: Found for C₂₃H₁₉F₆N₃O₃: C, 55.80; H, 3.90; N, 8.62%. Calculated: C, 55.30; H, 3.83; N, 8.41%.

2-Carboxy-3(2-trifluoromethyl piperidinyl methyleneamino)-4-trifluoromethyl-6-*p*-chlorophenyl furo[2,3-*b*]pyridine (**9c**): yield, 0.677 g (76.8%); m.p. 192.7 °C. ¹H NMR (CDCl₃) δ : 1.71 (s, 6H, -CH₂-CH₂-CH₂); 3.55-3.79 (br., d, 4H, N $< CH_2^{-}$); 7.42 (d, 2H, aromatic H); 7.95 (m,

2H, aromatic H, 1H, H–C(5)); 10.88 (s, 1H, –COOH) ppm. IR (KBr) (cm⁻¹): 3300; 1740; 1630; 1250. MS M⁺, m/z: 519 (M⁺); 408 (M⁺ – C₆H₄Cl); 339 (408 – CF₃); 311 (408 – COCF₃); 84 (C₅H₁₀N, base peak); 69 (CF₃). Analysis: Found for C₂₂H₁₆ClF₆N₃O₃: C, 50.96; H, 3.30; N, 8.12%. Calculated: C, 50.83; H, 3.10; N, 8.08%.

2.10. Preparation of 2-carbohydrazide-3-amino-4-trifluoromethyl-6-phenylfuro[2,3-b]pyridine (10) [4]

Compound 11 (0.2 g, 0.004 mol) was dissolved in ethanol (20 ml) and hydrazine hydrate (5 ml) added. The reaction

mixture was refluxed for 6 h with stirring, cooled and poured into crushed ice. The separated solid product was filtered, washed with water and dried. The product was characterised as compound **10**. Yield, 1.03 g (77.3%); m.p. 202.0 °C. The same compound **10** was also obtained when compound **5** was refluxed with hydrazine hydrate in ethanol.

2.11. Preparation of 2-carbethoxy-3-trifluoroacetylamino-4-trifluoromethyl-6-phenyl furo[2,3-b]pyridine (11)

Compound 1 (0.9 g, 0.0025 mol) was suspended in trifluoroacetic anhydride (4 ml), refluxed for 2 h, the mixture cooled and poured into crushed ice. The separated solid product was filtered, washed with water and dried. Yield, 0.939 g (84.3%); m.p. 160.7 °C. ¹H NMR (CDCl₃) δ : 1.42 (t, 3H, CH₃); 4.48 (q, 2H, CH₂); 7.52 (m, 3H, aromatic H); 8.3 (br., s, 1H, NH); 8.13 (m, 2H, aromatic H, 1H, H–C(5)) ppm. IR (KBr) (cm⁻¹): 3375; 2950; 1750; 1700. MS M⁺, *m/z*: 446 (M⁺, base peak); 418 (M⁺ – C₂H₄); 401 (M⁺ – OC₂H₅); 374 (M⁺ – C₆H₄ and CO₂); 305 (374 – CF₃); 69 (CF₃). Analysis: Found for C₁₉H₁₂F₆N₂O₄: C, 51.40; H, 2.83; N, 6.37%. Calculated: C, 51.13; H, 2.70; N, 6.27%.

2.12. Preparation of 2-piperidinoyl-3-trifluoroacetylamino-4-trifluoromethyl-6-phenyl furo[2,3-b]pyridine (12)

Piperidine (5 ml) was added to compound **11** (0.28 g, 0.00057 mol), the reaction mixture heated to 100 °C and stored for 4 h with stirring. The ethanol formed and the excess piperidine were removed under vacuum and the residue washed with n-hexane. The separated solid product was dried under vacuum. Yield, 0.166 g (60.2%); m.p. 123.4 °C. ¹H NMR (CDCl₃) δ : 1.87 (s, 6H, -CH₂-CH₂-CH₂); 3.82-3.96 (br., d, 4H, N $<_{CH_2-}^{CH_2-}$); 7.50 (d, 2H, aromatic H); 8.1 (m, 3H, aromatic H); 7.93 (s, 1H, H-C(5)); 9.25 (br., s, 1H, NH) ppm. IR (CHCl₃) (cm⁻¹): 3100; 1745; 1723; 1235. MS M⁺, *m/z*: 485 (M⁺); 401 (M⁺ - C₅H₁₀N); 373 (401 - CO); 304 (373 - CF₃); 84 (C₅H₁₀N, base peak); 77 (C₆H₅); 69 (CF₃). Analysis: Found for C₂₂H₁₇F₆N₃O₃: C, 54.66; H, 3.84; N, 8.87%. Calculated: C, 54.43; H, 3.53; N, 8.65%.

2.13. Preparation of 2-carbethoxy-3-acetylamino-4-trifluoromethyl-6-phenyl furo[2,3-b]pyridine (13)

Compound 1 (0.5 g, 0.0014 mol) was taken up in acetic anhydride (4 ml) and refluxed for 2 h at 110 °C with stirring, then cooled and poured into crushed ice. The separated solid product was filtered, washed with water and dried. Yield, 0.473 g (86.3%); m.p. 153.6 °C. ¹H NMR (CDCl₃) δ : 1.4 (t, 3H, CH₃); 2.38 (s, 3H, COCH₃); 4.45 (q, 2H, CH₂); 7.52 (m, 3H, aromatic H); 8.13 (m, 2H, aromatic H, 1H, H–C(5)) ppm. IR (KBr) (cm⁻¹): 3375; 2950; 1750; 1700. MS M⁺, m/z: 392 (M⁺); 350 (M⁺ – CH₂CO, base peak), 277 (350–COOC₂H₅). Analysis: Found for C₁₉H₁₅F₃N₂O₄: C, 58.23; H, 3.96; N, 7.21%. Calculated: C, 58.16; H, 3.85; N, 7.14%.

A.C.S. Reddy et al. / Journal of Fluorine Chemistry 74 (1995) 1-7

3. Results and discussion

The 2-carbethoxy-3-amino-4-trifluoromethyl-6-aryl-substituted furo [2,3-b] pyridines (1) were chosen as starting materials since they possess two functional groups *ortho* to each other. Hydrolysis of 1 in 10% potassium hydroxide gave compounds 2 which in turn gave a variety of products (3, 3', 4, 5 and 5') under different conditions (Scheme 1).

The mode of formation of the oxazines is through the initial acylation of the 3-amino function at low temperature followed by cyclisation to 1,3-oxazines at high temperature [5,6], as exemplified by the exclusive formation of intermediates 4 at 40 °C and cyclisation to 5 at 110 °C. Sideproducts (3' and 5') are formed in minor quantities by decarboxylation.

The CF₃ group induced changes in reactivity which have been realised in two respects: (1) regioselective attack of nucleophiles at the 2-position of the oxazine ring carrying the CF₃ group and (2) addition of hydrazine to COCF₃ in systems such as RNHCOCF₃ and subsequent fragmentation to RNH₂ and CF₃CONHNH₂. These two aspects have been well brought out in this work.

Compounds 3 and 5 were chosen to study the site of nucleophilic attack on the oxazine ring because they possess $-CH_3$ and $-CF_3$ groups at the C-2 position. When compounds 3 and 5 were reacted with piperidine in toluene, the products formed were 6 and 9.

Compound 6 was formed as a result of attack on the carbonyl of the oxazine ring and 9 was formed due to attack at the 2-position. A compound with the alternate structure 12 for product 9 was prepared independently and shown to be different from 9.

The differences in melting point, ¹H NMR spectra and mass spectra are discussed in the Experimental section as well as under the spectral discussion.

This established conclusively that the nucleophilic reagent regioselectively attacks the 2-position if it carries the CF_3 substituent, otherwise the seat of attack is the carbonyl of the oxazine ring. If a stronger base such as hydrazine hydrate was used, reaction with **5** led to the remarkable product **10** in

which the CF_3 at the 2-position was removed, while reaction with 3 followed a normal course producing 7 and 8. Since product 10 could also be prepared from 1 [4], the structure of product 10 is thoroughly established. The mode of formation of 10 resolves the difference in reactivity of 5 and 3 towards hydrazine as depicted below:

Since 5 carries a CF₃ group at the 2-position, the hydrazine molecule attacks regioselectively at that position and the intermediate formed is 14. Because the base is more reactive than piperidine, a second molecule of hydrazine attacks the carbonyl and liberates the CF₃ group at the 2-position as CF₃CONHNH₂, producing 10 as the product. This is evidently the consequence of CF₃-induced regioselective attack on the oxazine ring. This is the only plausible explanation for the formation of 10 with the loss of CF₃ group from 5 during the reaction, and for the absence of products similar to 7 and 8. Other secondary amines when used as nucleophiles behaved similarly to piperidine.

The second aspect of the CF₃-induced change of reactivity concerns the addition of hydrazine to RNHCOCH₃ and RNHCOCF₃. Normally RNHCOCH₃ reacts with N₂H₄ and produces the intermediate RN=C(CH₃)NHNH₂, which is responsible for further cyclisation reactions. In the case of RNHCOCF₃, the hydrazine adduct is incapable of dehydration because of the strong electron-withdrawing effect of the CF₃ group, as seen below:

This differentiating mechanistic aspect has been exemplified by the following reactions:

The same mechanistic approach holds good for the formation of 10 from 5, but, because of the well-established regioselectivity in the reaction of piperidine, formation of 9 and not 12 occurs from 5. It is reasonable to visualize the primary attack occurring at the 2-position followed by attack of the second molecule of hydrazine at the carbonyl as discussed above. The postulated mechanism appears to be the most appropriate.

3.1. Spectra

The IR spectra of compounds 2 showed a broad band in the 3300-3650 cm⁻¹ region corresponding to =OH and -NH₂ stretching and one band at 1235 cm⁻¹ corresponding to C-F stretching arising from CF₃. The disappearance of the broad band in the 3300-3650 cm⁻¹ region and the appearance of a lactone carbonyl band at 1775 cm⁻¹ in compounds 3 and 5, indicates the participation of -NH₂ and -COOH groups in cyclisation. This is further confirmed by the ¹H NMR spectra and mass spectra.

The ¹H NMR spectra of compounds 2 showed a broad signal at δ 10.9–10.95 ppm corresponding to the –COOH proton and another broad signal at δ 5.8 ppm for the –NH₂ protons, both being exchangeable with D₂O. In compounds 3, the signal at δ 2.65 ppm is specific for –CH₃ protons in the oxazine ring. The disappearance of signals at δ 5.8 and 10.9 ppm for the –NH₂ and –COOH protons respectively in compounds 3 and 5 confirms the cyclized structure. The ¹H NMR and mass spectra of compounds 9a and 12 showed different patterns as described in the Experimental section.

The mass spectra of all the compounds exhibited a stable molecular ion as the base peak.

Acknowledgment

The authors are grateful to Dr. A.V. Rama Rao, Director, IICT for his constant encouragement and to the Council of

7

Scientific and Industrial Research, New Delhi, India for Grant No. 21(280)/93/EMR-II.

References

- B. Narsaiah, A. Sivaprasad and R.V. Venkataratnam, OPPI Briefs. 25 (1993) 116.
- [2] B. Narsaiah, A. Sivaprasad and R.V. Venkataratnam, J. Fluorine Chem., 66 (1994) 47.
- [3] B. Narsaiah, A. Sivaprasad and R.V. Venkataratnam, J. Fluorine Chem., 67 (1994) 87.
- [4] B. Narsaiah, A. Sivaprasad and R.V. Venkataratnam, J. Fluorine Chem., 69 (1994) 139.
- [5] G. Wagner and J. Prantz, Pharmazie, 45 (1990) 213; [Chem. Abs., 113 (1990) 78 295w].
- [6] H. Vieweg, V. Krasselt, N. Bochm and J. Prantz, Pharmazie, 45 (1990)
 731; [Chem. Abs., 114 (1991) 122 219w].