

Accepted Article

Title: Selective Epoxidation of Fatty Acids and Fatty Acid Methyl Esters by Fungal Peroxygenases

Authors: Carmen Aranda, Andrés Olmedo, Jan Kiebist, Katrin Scheibner, José C del Río, Angel T Martínez, and Ana Gutiérrez

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: ChemCatChem 10.1002/cctc.201800849

Link to VoR: http://dx.doi.org/10.1002/cctc.201800849

WILEY-VCH

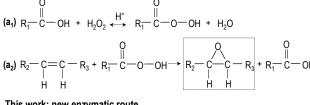
www.chemcatchem.org

COMMUNICATION

WILEY-VCH

Selective Epoxidation of Fatty Acids and Fatty Acid Methyl Esters by Fungal Peroxygenases

Carmen Aranda[‡], Andrés Olmedo[‡], Jan Kiebist, Katrin Scheibner, José C. del Río, Angel T. Martínez, and Ana Gutiérrez^{*}


Abstract: Recently discovered fungal unspecific peroxygenases from *Marasmius rotula* and *Chaetomium globosum* catalyze the epoxidation of unsaturated fatty acids (FA) and FA methyl esters (FAME), unlike the well-known peroxygenases from *Agrocybe aegerita* and *Coprinopsis cinerea*. Reactions of a series of unsaturated FA and FAME with *cis*-configuration revealed high (up to 100%) substrate conversion and selectivity towards epoxidation, although some significant differences were observed between enzymes and substrates with the best results being obtained with the *C. globosum* enzyme. This and the *M. rotula* peroxygenase appear as promising biocatalysts for the environmentally-friendly production of reactive FA epoxides given their self-sufficient monooxygenase activity and the high conversion rate and epoxidation selectivity.

Oils and fats are among the most important renewable feedstock of the chemical industry, whose possibilities are still far from being fully exploited.^[1] By simple industrial operations, fatty acids (FA) are available from vegetable oils in such purity that they may be used for further chemical transformations. Their conversion to FA methyl esters (FAME) is a well-known application of fats and oils, largely investigated for biodiesel production. Moreover, unsaturated FA and FAME can be further epoxidized, and used in industrial syntheses of chemicals and intermediates.

The industrial-scale epoxidation of unsaturated FA compounds is generally carried out by the Prileshajev^[2] reaction via percarboxylic acids (Scheme 1a₂). However, this method, which often includes strong mineral acids as catalysts for the "in situ" generation of peracids (Scheme 1a₁), suffers from several drawbacks such as the relatively low selectivity for epoxides due to oxirane ring opening in the acidic medium, the corrosive nature of acids, and the unstable character of peracids.^[3] Many studies have been aimed at searching an alternative, such as the chemo-enzymatic synthesis with lipases catalyzing the carboxylic acid reaction with hydrogen peroxide.^[4;5] However, the latter reaction maintains most drawbacks of peracid-based epoxidation. Therefore, direct enzymatic processes emerge as an alternative solution for more selective and environmentally friendly epoxidation of unsaturated lipids. Several enzymes are

[*] C. Aranda, A. Olmedo, Prof. J. C. del Río, Prof. A. Gutiérrez Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC Reina Mercedes 10, E-41012 Seville (Spain) E-mail: anagu@irnase.csic.es	
J. Kiebist, Prof. K. Scheibner JenaBios GmbH Orlaweg 2, D-00743 Jena (Germany) Prof. A. T. Martínez Centro de Investigaciones Biológicas, CSIC Ramiro de Maeztu 9, E-28040 Madrid (Spain)	
[‡] These authors contributed equally to the work	

Conventional chemical route

This work: new enzymatic route

(b) $R_2 = C = C = R_3 + H_2O_2 \xrightarrow{\text{UPO}} R_2 = C = C - R_3 + H_2O_2$

Scheme 1. Chemical and enzymatic routes for the epoxidation of fatty acids.

known to catalyze epoxidation directly, such as cytochrome P450 monooxygenases (P450), diiron-center oxygenases, and plant peroxygenases.^[5;6] However, they present some drawbacks, such as their intracellular nature, and the requirement for costly cosubstrates in the two former cases.

Here, we show a promising enzymatic technology to epoxidize unsaturated FA (Scheme 1b) under mild and environmentally-friendly conditions, as potential alternative to the above chemical and enzymatic epoxidations. This includes the use of two recently discovered unspecific peroxygenases (UPO, EC 1.11.2.1), from the fungi *Marasmius rotula* (*Mro*UPO)^[7] and *Chaetomium globosum* (*CgI*UPO).^[8] These and related fungal peroxygenases represent a new class of enzymes that eludes some of the limitations of other monooxygenases since they are secreted proteins, therefore far more stable, and only require H₂O₂ for activation.

Peroxygenases are structurally related to the P450s, as they also contain the heme prosthetic group coordinated by a cysteine ligand, but they do not depend on the reductive activation of molecular oxygen and catalyze the transfer of an oxygen atom from peroxide to substrates.^[9] Initially, these UPO were shown to catalyze oxygenation reactions on aromatic compounds,^[10] and their action on aliphatic compounds was demonstrated later.^[11] After the first UPO discovered in Agrocybe aegerita (AaeUPO),^[12] similar enzymes were found in other basidiomycetes, such as M. rotula, and there are indications for their widespread occurrence in the fungal kingdom.^[13] Over one-hundred peroxygenase-type genes have been identified in the analysis of 24 basidiomycete genomes,^[14] including Coprinopsis cinerea.^[15] One UPO from the latter fungus is produced as a recombinant protein (rCciUPO) by Novozymes (Bagsvaerd, Denmark) (Figure S1A).^[16] Interestingly, the recently described MroUPO presents differences with the best studied fungal peroxygenases, such as the ability of oxidizing bulkier substrates, [9;17] the terminal hydroxylation of *n*alkanes^[18] and the chain-shortening of carboxylic acids.^[19] On

the other hand, CgIUPO is the fourth wild-type described UPO, and the first isolated from an ascomycete.^[8]

The reactions of purified MroUPO and Cg/UPO (Figure S1B,C) with a series of cis-monounsaturated FA (from C14:1 to C22:1), showed that both enzymes are capable of oxygenating these substrates, Cg/UPO being more active since it achieved maximal substrate conversion with lower enzyme doses (Table 1). Interestingly, both peroxygenases generated the epoxidized derivatives as main products (Figures 1A-B), unlike the other well-known AaeUPO (not shown) and rCciUPO that were not able to epoxidize the double bond and instead, produced the hydroxyderivatives at the subterminal positions (Figure 1C). Therefore, whereas AaeUPO and rCciUPO shows similar regioselectivity towards saturated and unsaturated FA, MroUPO and Cg/UPO behave differently, hydroxylating at the terminal and/or subterminal positions the saturated FA and oxygenating the double bonds of unsaturated ones. The hydroxylation of FA at the subterminal positions by AaeUPO and rCciUPO was previously described.^[11;16] However, the epoxidation of a fatty acid by a fungal peroxygenase is revealed here for the first time. Moreover, whereas Cg/UPO was highly selective with all unsaturated FA, over 90% epoxidation except with erucic (C22:1) acid, epoxidation by MroUPO depended on FA chain length, showing the highest value with myristoleic (C14:1) acid.

Besides epoxides, minor amounts of other products were found with *CgI*UPO and especially with *Mro*UPO, such as oxygenated derivatives of epoxidized FA (ED) and hydroxylated

Table 1. Monounsaturated FA (R=H) and FAME (R=CH₃) reactions with Cg/UPO and MroUPO doses yielding maximal conversion into epoxides, together with other oxygenated (hydroxyl, keto and carboxyl) derivatives at different positions (arrows)

			t un A		+ + +	\downarrow	Mn OR
	H ₂ O ₂ H ₂ O	Е	E)		HD	
				Pro	ducts (%)	
Substrate	Enzyme	e dose	H ₂ O ₂ (mM)	E	ED	HD	Tot (µM)
<u>R=H</u>							
14:1 <i>cis</i> -∆9	<i>Cgl</i> UPO	60 nM	5	99	-	1	98
(n=5, m=1)	<i>Mro</i> UPO	200 nM	5	86	8	6	99
16:1 <i>cis</i> -∆9	<i>Cgl</i> UPO	60 nM	5	91	4	5	99
(n=5, m=3)	<i>Mro</i> UPO	200 nM	2.5	65	17	18	99
18:1 <i>ci</i> s-∆9	<i>Cgl</i> UPO	60 nM	2.5	91	2	7	99
(n=5, m=5)	<i>Mro</i> UPO	200 nM 🔺	5	38	61	1	96
20:1 <i>cis</i> -∆11	<i>Cgl</i> UPO	60 nM	5	95	4	1	94
(n=7, m=5)	<i>Mro</i> UPO	400 nM ^a	2.5	62	7	31	99
22:1 <i>ci</i> s-∆13	Cg/UPO	250 nM	2.5	50	12	39	77*
(n=9, m=5)	MroUPO	400 nM ^c	5	67	10	23	91
R=CH ₃							
14:1 <i>ci</i> s-∆9	<i>Cgl</i> UPO	60 nM	2.5	100	-	-	94
	MroUPO	200 nM	2.5	68	13	19	100
18:1 <i>ci</i> s-∆9	Cg/UPO	1 μM ^b	5	98	-	2	75*
	<i>Mro</i> UPO	200 nM ^c	2.5	73	7	21	93

Substrates (100 µM), enzyme doses, and estimated total products (µM), relative abundance (% of total products) of epoxide (E), epoxide derivatives (ED), hydroxylated derivatives (HD) are shown. Reactions were performed in 20% acetone, 30 min at 30°C except for reactions ${}^{a,b\,and\,c}$ that were performed in 40% acetone at 40°C, for 30 min, 60 min and 120 min, respectively. *Higher enzyme concentration (up to 500 nM) did not improve conversion. See Figure S2 for GC-MS of authentic standards and Figures S3A,S4 for mass spectra of E and ED.

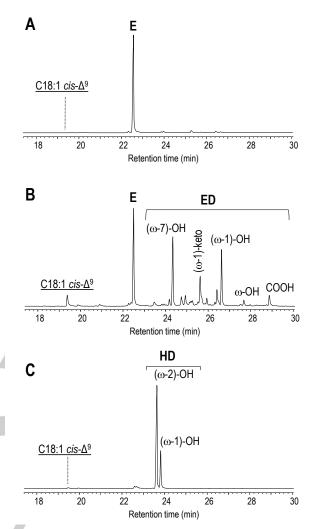
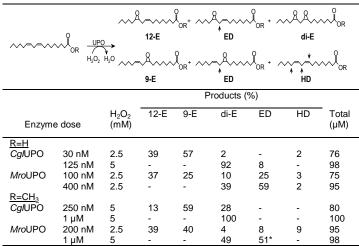
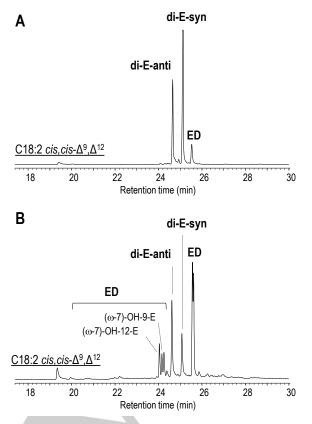
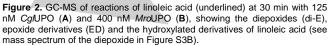



Figure 1. GC-MS of reactions of oleic acid (underlined) at 30 min with 60 nM *CgI*UPO (A), 200 nM *Mro*UPO (B), and 100 nM *rCci*UPO (C), showing the epoxide (E), epoxide derivatives (ED) and the hydroxylated derivatives (HD) of oleic acid.

derivatives of FA (HD) mainly at terminal or subterminal positions of the carbon chain, and at the allylic positions (Table 1, Figure 1B). The higher efficiency and selectivity of *CgI*UPO than *Mro*UPO for epoxidation of most FA is shown in reactions with oleic (C18:1) acid (Figures S5-S6). Curiously, erucic acid, an abundant fatty acid in rapeseed and mustard oils, was transformed and epoxidized at a larger extent by *Mro*UPO. The high selectivity of these UPOs epoxidizing oleic and palmitoleic (C16:1) acids (up to 100%) differs from that of P450 (BM3) where hydroxylation (> 97% and 65%, respectively) predominated over epoxidation (< 3% and 35%).^[6]


In addition to monounsaturated FA, some polyunsaturated FA (linoleic and α - and γ -linolenic acids) abundant in vegetable oils were tested as substrates. Although both UPOs transformed almost completely linoleic acid at the highest enzyme doses (Table 2), *CgI*UPO was more selective producing the diepoxide (both syn and anti-enantiomers) in very high yield (92% of total products) (Figure 2A). *Mro*UPO, besides the epoxides also generated hydroxylated derivatives of the monoepoxides and oxygenated derivatives at allylic positions (mainly at ω -7) (Figure


Table 2. Oxidation of linoleic acid and its methyl ester by Cg/UPO and MroUPO

Substrate (100 µM), enzyme doses, H_2O_2 conc., amount of estimated total products (µM) and relative abundance (% of total products) of 12-epoxide (12-E), 9-epoxide (9-E), di-epoxide (di-E), epoxide derivatives (ED) and hydroxylated derivatives (HD) are shown. Arrows indicate the main chain positions oxidized by the enzymes in epoxidized derivatives (ED) and hydroxylated derivatives (HD). Reactions conditions: 20% acetone at 30°C, 30 min (R=H), 40% acetone at 40°C, 60 min (*Cg*/UPO) and 120 min (*Mro*UPO) (R=CH₃).* Mono- and di-epoxide derivative. See Figure S7 for GC-MS of authentic standards and Figures S3B, S8 for mass spectra of E and ED.

2B). When lower doses of enzymes were used, a predominance of monoepoxides over diepoxides was observed (Table 2).

Linolenic acids (α - and γ -) were also transformed by *Mro*UPO and *CgI*UPO (Figure S9). Both, monoepoxides (located in two different double bonds) and diepoxides were generated from α -linolenic acid under the conditions tested. However, only one epoxide was observed in the γ -linolenic acid reactions.

To compare the efficiency of MroUPO and Cg/UPO oxidizing unsaturated FA, apparent kinetic constants were determined for oleic acid oxidation (Table 3) in spite of the difficulties for GC-MS estimation of initial reaction rates. Regarding the turnover rate, Cg/UPO presented three-fold higher k_{cat} values than MroUPO. In addition, the K_m value was four-fold higher for MroUPO, which represented less affinity by this enzyme compared to Cg/UPO. As a result, one order of magnitude higher catalytic efficiency (k_{cat}/K_m) was observed with Ca/UPO. In agreement with these results, Cg/UPO presented total turnover numbers (TTN) up to 8000 in oleic acid reactions when the substrate concentration was increased to 1 mM while this number was half for MroUPO with 50 nm enzyme being used in both cases. This is a promising value accompanied by a significantly higher product amount (of about 0.5 mM) considering the limited solubility and other difficulties for fatty acid epoxidation. Likewise, the turnover frequency (TOF) was double for Cg/UPO (2.2 s⁻¹) than for MroUPO (1.1 s⁻¹). Solubility limitations prevented calculation of accurate kinetic constants for linoleic acid oxidation, since saturation could not be estimated especially for MroUPO (Figure S10), but higher activity than found for oleic acid was observed at high linoleic acid concentration.

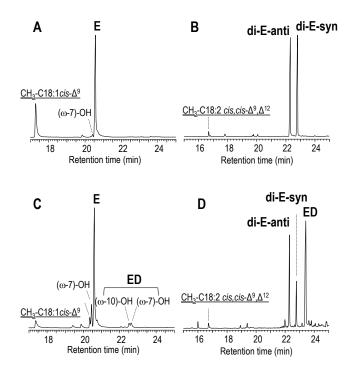

FAME, usually obtained from vegetable by oils transesterification with methanol, were also tested as substrates of MroUPO and Cg/UPO. Namely, the methyl esters of two monounsaturated (myristoleic and oleic acids) and one diunsaturated FA (linoleic acid) were selected. Both peroxygenases were able to transform and epoxidize the monounsaturated FAME (Figures 3A,C). Cg/UPO showed similar selectivity towards the esters than with the free FA, but differences in the case of oleic acid were observed with MroUPO (Table 1). Regarding the methyl ester of linoleic acid, Cg/UPO showed a strict selectivity towards epoxidation (generating the diepoxide) while MroUPO was less selective towards diepoxide formation (Table 2, Figures 3B,D). In contrast, P450 BM3, which hydroxylate/epoxidize free fatty acids, was reported as unable to hydroxylate FAME [20]. This seems related to the fact that the free carboxyl group is required to fix the substrate at the entrance of P450 active site [6]. Finally, it is interesting that different patterns of oxygenation were observed with the cis isomers of the substrates (compared to the trans isomers). While MroUPO converted predominantly myristelaidic, palmitelaidic and elaidic acids (or their methyl esters) into the hydroxyderivatives at the allylic positions, Cg/UPO generated mainly the epoxides, with the only exception of elaidic acid (data not shown).

Table 3. Estimated kinetic parameters for oleic acid oxidation by
Cg/UPO and MroUPO. Data represent mean values of three
replicates with standard arrars

replicates with	n standard errors		
	k_{cat} (s ⁻¹)	<i>K</i> _m (μΜ)	$k_{\rm cat}/K_{\rm m}({\rm M}^{-1}\cdot{\rm s}^{-1})$
Cg/UPO	8.1 ± 0.9	10.7 ± 4.0	7.6 ± 3.0 x 10 ⁵
MroUPO	2.6 ± 0.2	38.9 ± 6.1	6.7 ± 1.1 x 10 ⁴

WILEY-VCH

Figure 3. GC-MS of reactions of methyl oleate (*left*, underlined) with 1 μ M *Cg*/UPO at 60 min (**A**) and 200 nM *Mro*UPO at 120 min and (**C**), showing the epoxide (E), epoxide derivatives (ED); and the hydroxylated derivatives, and methyl linoleate (*right*, underlined) with 1 μ M *Cg*/UPO at 60 min (**B**) and 1 μ M *Mro*UPO at 120 min (**D**), showing the diepoxides (di-E), epoxide derivatives (ED) and the hydroxylated derivatives of methyl linoleate.

The selective epoxidation of FA and FAME, a reaction of great interest for the chemical industry, [21] must be added to the of UPOs, as dream biocatalysts repertoire for oxyfunctionalization chemistry.^[9;22;23] The structural determinants driving to selective epoxidations in MroUPO and Cg/UPO (compared to AaeUPO and CciUPO) are difficult to be identified with the information available on these new heme-thiolate enzymes (note that only one UPO crystal structure has been published to date). However, in related P450, epoxidation vs hydroxylation rates have been related to the balance between the iron hydroperoxo and oxenoid forms after the oxidative activation of the enzyme, with an active site threonine being involve in the transition as the proton donor.^[24:25] Interestingly, a threonine residue is present at the active sites of both AaeUPO and CciUPO, and absent from those of MroUPO and Cg/UPO, as shown by Aranda et al.^[26] but its relevance in the FA hydroxylation/epoxidation balance is still to be experimentally investigated. This and other structural-functional studies with UPOs will help to understand the reaction mechanisms of these versatile enzymes, and to obtain ad-hoc variants for biotechnological application.

Acknowledgements

This work was funded by the BIORENZYMERY (AGL2014-53730-R) project of the Spanish MINECO (co-financed by FEDER) and by the CSIC 201740E071 project. H. Lund (Novozymes) is acknowledged for r*Cci*UPO. **Keywords:** epoxidation • fatty acids • fatty acid methyl esters fungal peroxygenases • oxidoreductases

- [1] U. Biermann, U. Bornscheuer, M. A. R. Meier, J. O. Metzger, H. J. Schäfer, *Angew. Chem. Int. Ed.* **2011**, *50*, 3854-3871.
- N. Prileschajew, *Ber. Dtsch. Chem. Ges.* **1909**, *42*, 4811-4815.
 S. M. Danov, O. A. Kazantsev, A. L. Esipovich, A. S. Belousov, A. E. Rogozhin, E. A. Kanakov, *Catal. Sci. Technol.* **2017**, *7*, 3659-
- 3675.
 [4] F. Björkling, H. Frykman, S. E. Godtfredsen, O. Kirk, *Tetrahedron*
- 1992, 48, 4587-4592.
 [5] C. Tiran, J. Lecomte, E. Dubreucq, P. Villeneuve, OCL 2008, 15, 179-183.
- [6] R. T. Ruettinger, A. J. Fulco, *J. Biol. Chem.* **1981**, *256*, 5728-5734.
 [7] G. Gröbe, M. Ullrich, M. Pecyna, D. Kapturska, S. Friedrich, M.
- Hofrichter, K. Scheibner, *AMB Express* 2011, *1*, 31-42.
 [8] J. Kiebist, K. U. Schmidtke, J. Zimmermann, H. Kellner, N.
- [8] J. Klebist, K. U. Schmidtke, J. Zimmermann, H. Keiner, N. Jehmlich, R. Ullrich, D. Zänder, M. Hofrichter, K. Scheibner, *ChemBioChem* **2017**, *18*, 563-569.
- [9] M. Hofrichter, H. Kellner, M. J. Pecyna, R. Ullrich, Adv. Exp. Med. Biol. 2015, 851, 341-368.
- M. Hofrichter, R. Ullrich, M. J. Pecyna, C. Liers, T. Lundell, *Appl. Microbiol. Biotechnol.* 2010, *87*, 871-897.
 A. Gutiérrez, E. D. Babot, R. Ullrich, M. Hofrichter, A. T. Martínez,
- J. C. del Río, Arch. Biochem. Biophys. 2011, 514, 33-43.
 R. Ullrich, J. Nuske, K. Scheibner, J. Spantzel, M. Hofrichter, Appl.
- Environ. Microbiol. 2004, 70, 4575-4581.
 M. J. Pecyna, R. Ullrich, B. Bittner, A. Clemens, K. Scheibner, R.
- [13] M. J. Petyna, K. Olinori, D. Bittler, A. Clemens, K. Schebert, M. Hofrichter, *Appl. Microbiol. Biotechnol.* 2009, *84*, 885-897.
 [44] D. E. L. M. Di L. D. Di L. K. D. D. A. Di L. L. K. D. D. L. L. K. D. A. Di L. L. K. D. D. A. Di L. L. K. D. A. Di L. L. K. D. D. Di L. L. K. H. D. D. Di L. L. K. K. D. Di L. L. K. K. D. Di L. K. K. D. Di L. L. K. K. D. Di L. L. K. D. Di L. K. K. D. Di L. L. K. K. D. Di L. L. K. D. Di L. K. K. DI L. K. K. D. Di L. K.
- [14] D. Floudas, M. Binder, R. Riley, K. Barry, R. A. Blanchette, B. Henrissat, A. T. Martínez, R. Otillar, J. W. Spatafora, J. S. Yadav et al., *Science* 2012, 336, 1715-1719.
- [15] J. E. Stajich, S. K. Wilke, D. Ahren, C. H. Au, B. W. Birren, M. Borodovsky, C. Burns, B. Canbäck, L. A. Casselton, C. K. Cheng et al., *Proc. Natl. Acad. Sci. USA* **2010**, *107*, 11889-11894.
- [16] E. D. Babot, J. C. del Río, L. Kalum, A. T. Martínez, A. Gutiérrez, Biotechnol. Bioeng. 2013, 110, 2332.
- [17] E. D. Babot, J. C. del Río, M. Cañellas, F. Sancho, F. Lucas, V. Guallar, L. Kalum, H. Lund, G. Gröbe, K. Scheibner, R. Ullrich, M. Hofrichter, A. T. Martínez, A. Gutiérrez, *Appl. Environ. Microbiol.* 2015, *81*, 4130-4142.
- [18] A. Olmedo, C. Aranda, J. C. del Río, J. Kiebist, K. Scheibner, A. T. Martínez, A. Gutiérrez, Angew. Chem. Int. Ed. 2016, 55, 12248-12251.
- [19] A. Olmedo, J. C. del Río, J. Kiebist, K. Scheibner, A. T. Martínez, A. Gutiérrez, *Chem. -Eur. J.* 2017, 23, 16985-16989.
- [20] Y. Miura, A. J. Fulco, Biochim. Biophys. Acta-Lipids Lipid Metab. 1975, 388, 305-317.
- [21] A. Corma, S. Iborra, A. Velty, *Chem. Rev.* 2007, 107, 2411-2502.
 [22] Y. Wang, D. Lan, R. Durrani, F. Hollmann, *Curr. Opin. Chem. Biol.*
- 2017, 37, 1-9. [23] S. Bormann, A. G. Baraibar, Y. Ni, D. Holtmann, F. Hollmann, October 1, 26, Tachard 2015, 5, 2020, 2052.
- Catal. Sci. Technol. 2015, 5, 2038-2052.
 [24] A. D. N. Vaz, D. F. McGinnity, M. J. Coon, Proc. Natl. Acad. Sci. USA 1998, 95, 3555-3560.
- [25] E. G. Hrycay, S. M. Bandiera, Adv. Exp. Med. Biol. 2015, 851, 1-61.
- [26] C. Aranda, R. Ullrich, J. Kiebist, K. Scheibner, J. C. del Río, M. Hofrichter, A. T. Martínez, A. Gutiérrez, *Catal. Sci. Technol.* 2018, 8, 2394-2401.

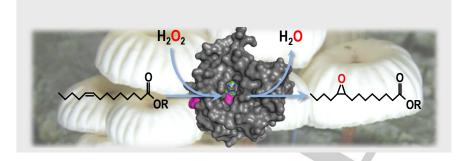
WILEY-VCH

COMMUNICATION

Entry for the Table of Contents (Please choose one layout)

Layout 1:

COMMUNICATION


Author(s), Corresponding Author(s)*

Page No. – Page No.

Title

Layout 2:

COMMUNICATION

Carmen Aranda[‡], Andrés Olmedo[‡], Jan Kiebist, Katrin Scheibner, José C. del Río, Angel T. Martínez, and Ana Gutiérrez*

Page No. – Page No.

Selective Epoxidation of Fatty Acids and Fatty Acid Methyl Esters by Fungal Peroxygenases

Recently discovered fungal unspecific peroxygenases from *Marasmius rotula* and *Chaetomium globosum* catalyze the epoxidation of unsaturated fatty acids (FA) and FA methyl esters (FAME), unlike the well-known peroxygenases from *Agrocybe aegerita* and *Coprinopsis cinerea*. Reactions of a series of unsaturated FA and FAME revealed high substrate conversion (with up to 8000 total turnover number in oleic acid reactions) and selectivity towards epoxidation (often >90%), the best results being obtained with the *C. globosum* enzyme.