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Complexes with a significantly nonplanar environment
around tetracoordinate copper(ii) centers are comparatively
rare and were often investigated in connection with copper
enzyme modeling[1] or with the highly distorted type 1 copper
centers in blue copper proteins.[2] These centers exhibit partial
sulfur coordination and act as electron-transfer sites, shuttling
between the CuII and CuI states. The CuII,I couple can also be
active in the electron-transfer interaction with one[3,4] or
two[5, 6] non-innocent quinone ligands (Q). While a biochem-
ically relevant valence tautomer equilibrium CuII(Q2�)QCuI

(QC�) has been observed within[7] and outside[4] oxidase
enzymes, the focus with Cu(Q)2 compounds has been on the
study of spin–spin interaction in stable three-spin systems
(QC�)CuII(QC�).[5, 6] Using sterically protected o-benzosemi-
quinonemonoimines, such as QxC� , Chaudhuri et al. have
described a planar such complex [(QxC�)CuII(QxC�)] (1), with a
(›,›,fl) ground state containing two antiferromagnetically
coupled radical ligands.[6]

Herein we describe how a minor modification, the
introduction of a potentially coordinating methylthio sub-

stituent in the o-position of the N-aryl group to form QyC� , can
considerably change the structure and the properties of this
three-spin system.

The new ligand system was synthesized in the reduced
form H2Qy.

[8] Its reaction with CuCl produced an air-stable
complex [(Qy)Cu(Qy)] (2) which could be crystallographically
characterized (Figure 1).[9] A significantly twisted arrange-

ment is found about the copper center which has a N1CuO1/
N2CuO2 dihedral angle of 32.20(9)8 and is coordinated by
two ligands through the N and O donors. However, there is
also a weak additional interaction from S1 to the copper atom
(Cu–S1 3.198(1) �; Cu–S2 3.475(1) �). Very long CuII–
S(thioether) separations have also been reported for certain
type 1 copper centers in proteins, especially azurin.[2] The
structural data show unambiguously that the ligands are in the
semiquinone state,[10] which implies the + ii oxidation state
for the copper center in its highly twisted coordination
environment. The sum of bond angles at the copper is 685.88,
about halfway between the values for square planar (7208)
and tetrahedral geometry (ca. 6578). Although the Cu�O and
Cu�N bonds are comparable, the N1-Cu-N2 angle is closer to
linearity at 171.858 than the O1-Cu-O2 angle (149.708)—
possibly a result of steric repulsion between the aryl
substituents.

Figure 2 shows the dependence of cT on T for the three-
spin compound [(QyC�)CuII(QyC�)].[11a] The room temperature
cT value of 0.46 cm3 K mol�1 is much lower than expected
(1.125 cm3 Kmol�1) for three uncoupled S = 1/2 spins with g
� 2, which indicates predominantly antiferromagnetic
exchange interactions in the system. At lower temperatures,
the cT value reaches a plateau at cT= 0.365 cm3 K mol�1, in
agreement with an S = 1/2 ground state. At the lowest
temperatures the cT value decreases again. This system of
three exchange-coupled spins can be described by the

Figure 1. Molecular structure of complex 2. Selected bond lengths [�]
and angles [8]: Cu-O1 1.9173(15), Cu-O2 1.9290(16), Cu-N1
1.9372(19), Cu-N2 1.9368(18), O1-C1 1.296(3), O2-C22 1.292(3), N1-
C6 1.355(3), N2-C27 1.352(3), C1-C2 1.430(3), C22-C23 1.430(3), C2-
C3 1.380(3), C23-C24 1.373(3), C3-C4 1.433(3), C24-C25 1.433(3), C4-
C5 1.371(3), C25-C26 1.368(3), C5-C6 1.419(3), C26-C27 1.421(3), C6-
C1 1.453(3), C27-C22 1.455(3); O1-Cu-O2 149.81(8), O1-Cu-N2
97.00(7), O2-Cu-N1 98.30(7), N2-Cu-N1 171.95(8), O1-Cu-N1 84.51(7),
O2-Cu-N2 84.40(7).
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isotropic exchange Hamiltonian [Eq. (1)] where spins S1 and
S3 refer to the two QyC� radicals and spin S2 is the CuII center.

h ¼ �J ðS1 � S2 þ S2 � S3Þ�J0 S1 � S3 ð1Þ

The exchange coupling in such a system leads to three spin
states, two with S = 1/2 and one with S = 3/2, the energies of
which depend on the sign and magnitude of the two exchange
interactions.[6] The two S = 1/2 states differ in the relative
orientation of the magnetic moments of spin S1 and S3 which
can be described by S* = S1 + S3. The spin functions are fully
described by the total and intermediate spins as jST S*i=
j 1=2 0i, j 1=2 1i, and j 3=2 1i, or in symbolic fashion (fl,›,fl),
(›,›,fl), and (›,›,›). Their energies are given by E(›,›,fl) =

�J + J’, E(fl,›,fl) = 0, and E(›,›,›) =�3=2 J, taking the (fl,›,fl)
state as the energy origin. The cT product as a function of
temperature is then given by Equation (2).

cT ¼ NA m2
B

4 k

g2
1
2,1þ g2

1
2,0exp½ðJ�J0Þ=k T� þ 10 exp½3 J=2 k T�

1þ exp½ðJ�J0Þ=k T� þ 2 exp½3 J=2 k T�
ð2Þ

The S = 1/2 ground state can have either (›,›,fl) or (fl,›,fl)
character, depending on whether the antiferromagnetic
interaction between the two radicals or between the radical
and metal are dominating. Electron paramagnetic resonance
(EPR) results indicate that the lowest spin state has predom-
inant radical character (see below), from which it can be
concluded that this lowest spin state is best described as
(fl,›,fl). Thus the antiferromagnetic metal–radical interaction
must be stronger than that between the two radicals (j J j>
j J’ j ). Since EPR shows no evidence for excited spin states
between 110 K and room temperature in the form of extra
signals or shifting signals (in the case of fast spin-state
interconversion), the excited S = 1/2 state must lie at high
energy, meaning that j J j � j J’ j is large.

Fitting a susceptibility curve using the Equation (2) is
problematic since the parameters are interdependent and
there is no unique solution.[11b] However, the results suggest
that the metal–radical interaction is strongly antiferromag-
netic with a magnitude of J =�414 cm�1, while the radical–
radical interaction is also antiferromagnetic, but probably

weaker. For more definitive conclusions to be drawn the
excited S = 1/2 (›,›,fl) state needs to be determined exactly.

The EPR results for 2 differ significantly from those of 1
(with planar configuration at the metal):[6] Instead of a signal
for copper(ii) with g> 2[6] we observe a partially resolved
radical-type spectrum at g = 2.0012 in CH2Cl2 solution
(Figure 3). In the frozen state at 110 K or 4 K the g compo-

nents were found at g1 = 2.050, g2 = 1.9937 (A2 = 2.0 mT), and
g3 = 1.957, gav = 2.0006. The g value and hyperfine data are
fully compatible with a copper-coordinated 3,5-di-tert-butyl-
o-semiquinoneimine radical anion,[3a,4] the slightly lower
g value signifies the presence of low-lying excited states
with non-zero orbital angular momentum.[12]

The EPR result in particular points to a (›,fl,›) ground
state for [(QyC�)CuII(QyC�)] with a dominant antiferromagnetic
metal–ligand (and not ligand–ligand[6]) interaction. Clearly
the interligand spin–spin interaction between the two semi-
quinone ligands is diminished as a consequence of the
nonplanar coordination arrangement.

In the absence of detailed structural and magnetic results,
the appearance of a radical-type EPR signal could suggest an
alternative oxidation state combination of (QyC�)CuI(Qy) for 2
which would also be in agreement with a nonplanar metal
configuration. However, the susceptibility behavior and the
bond lengths within the two very similar ligands clearly
demonstrate the presence of [(QyC�)CuII(QyC�)] with a (›,fl,›)
ground state.

Like the planar analogue 1[6] with QxC� , the compound 2
described herein undergoes four reversible one-electron
steps, two oxidations at + 0.37 and �0.38 V, and two

Figure 2. Magnetic susceptibility–temperature product for 2 as a func-
tion of temperature (&) at 1 T and fit (c) using the parameters
g = 2.00, J =�414 cm�1, and J’=�114 cm�1.

Figure 3. EPR spectrum of complex 2 in dichloromethane at
210 K (top) with computer simulation (bottom): a(63,65Cu) = 0.22 mT,
a(14N) = 0.70 mT, a(1H) = 0.36 mT (1H,H3).
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reductions at �1.07 and �1.49 V (versus Fc+/0 (Fc = ferro-
cene) in CH2Cl2/0.1m Bu4NPF6). The results of spectroelec-
trochemistry investigations in the UV/Vis-NIR regions are
summarized in Figure 4, Table 1, [Eq. (3)]: On oxidation to 2+

the long-wavelength bands attributed to intraligand (IL) and
ligand-to-metal charge transfer (LMCT) transitions are
diminished and a strong band emerges at 515 nm, possibly
associated with the formation of a quinone ligand in [(Qy)CuII(QyC�)]+. The second oxidation to [(Qy)CuII(Qy)]2+

leaves only the band arising from quinone, shifted to 528 nm.
One-electron reduction could lead to either [(QyC�)CuII-
(Qy

2�)]� or [(QyC�)CuI(QyC�)]� . Spectroelectrochemical reduc-
tion gives rise to a strong, broad (Dn1/2 = 2600 cm�1) band at
1940 nm (5150 cm�1, Figure 4, Table 1) in addition to absorp-

tions at 526 and 695 nm. The intense band (oscillator strength
f = 5.4 � 10�2) in the near infrared is more compatible with the
ligand-to-ligand intervalence charge-transfer transition[13] for
a [(QyC�)CuII(Qy

2�)]� formulation, however, the structure of
this species is not known. The second reduction to either
[(QyC�)CuI(Qy

2�)]2� or [(Qy
2�)CuII(Qy

2�)]2� does not produce
intense absorptions above 450 nm. More detailed assignments
of oxidation state combinations and electronic transitions will
require high-quality excited-state TD-DFT calculations.

Summarizing, we have found an additional factor in
determining the oxidation and spin state for the already
complicated interaction[3–6] between the copper(ii,i) couple
and quinonoid ligands, that is, the possible structural dis-
tortion caused by secondary coordination. While radical
anion ligands[12] already yield unusual complexes with tran-
sition metals in “normal” configurations,[3b, 6, 14, 15] the geo-
metrical distortion can add, literally, another twist to this
remarkable class of compounds, allowing for a striking switch
of spin combinations. The behavior of the Qy

0,C� ,2� redox
system as a ligand towards other transition metals is currently
being investigated.
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Figure 4. Spectroelectrochemistry study of complex 2 in CH2Cl2/0.1m
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Table 1: Absorption data of complexes.[a]
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1940(4.5)
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[a] In CH2Cl2 solution, charged species were electrochemically generated
in CH2Cl2/0.1m Bu4NPF6.
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