The Koenigs-Knorr reaction of methyl 4,6-0-benzylidene-*a*-D-glucopyranoside with 2,3,4,6-tetra-0-acetyl-*a*-D-galactopyranosyl bromide

ANDRZEJ TEMERIUSZ, BOGUSŁAWA PIEKARSKA, JAN RADOMSKI, AND JANUSZ STĘPIŃSKI Department of Chemistry, University of Warsaw, Warsaw (Poland) (Received November 20th, 1981; accepted for publication, March 2nd, 1982)

The reaction¹ between methyl 4,6-O-benzylidene- α -D-glucopyranoside (1) and 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide (2) in the presence of silver carbonate yielded derivatives of disaccharide methyl glycosides containing $(1\rightarrow 2)-\alpha$, $(1\rightarrow 2)-\beta$, $(1\rightarrow 3)-\beta$, and $(1\rightarrow 6)-\beta$ linkages, and trisaccharide methyl glycosides containing $(1\rightarrow 2)-\beta$, $(1\rightarrow 3)-\beta$ and $(1\rightarrow 2)-\beta$, $(1\rightarrow 6)-\beta$ linkages.

We now report on the condensation, under the Koenigs-Knorr^{2,3} conditions, between 1 and 2,3,4,6-tetra-O-acetyl- α -D-galactopyranosyl bromide (3), using silver carbonate, Drierite, and 1,2-dichloroethane. From the product mixture, 24% of crystalline methyl 4,6-O-benzylidene-2-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)- α -D-glucopyranoside (4) was isolated. The remaining products were debenzylidenated and deacetylated, and then fractionated on Dowex 1-X8 (HO⁻) resin. Nine fractions were obtained, and each was subjected to ¹³C-n.m.r. spectroscopy (Table I) and methylation analysis by the modified Hakomori method⁴. The resulting, partly methylated alditol acetates were analysed by g.l.c.-m.s. Thus, the position and configuration of each linkage were established.

The condensation of 1 and 3 gave two disaccharide derivatives (5 and 8) containing $(1\rightarrow 2)-\alpha$ and $(1\rightarrow 3)-\alpha$ linkages, respectively, and trisaccharide derivatives (10, 12, and 6) containing $(1\rightarrow 2)-\beta, (1\rightarrow 3)-\beta, (1\rightarrow 3)-\beta, (1\rightarrow 6)-\beta$, and $(1\rightarrow 2)-\alpha, (1\rightarrow 3)-\beta$ linkages, respectively. A trisaccharide derivative analogous to 10 was isolated after condensation¹ of 1 and 2. Takeo⁶ condensed methyl 4,6-O-benzylidene- β -D-gluco-pyranoside with 2 and obtained a trisaccharide derivative analogous to 12. The trisaccharide derivative 6 has not been isolated hitherto.

Comparison of the results obtained for the condensations of 1 and 3, and 1 and 2, shows that the configuration at C-4 in the glycosyl bromide affects the proportions of the major disaccharide products. Thus, the condensation of 1 and 3 gave mainly (63.4% combined yield) 1 $[(1\rightarrow 2)-\beta]$ and 11 $[(1\rightarrow 3)-\beta]$ in the ratio 5:4, whereas the condensation of 1 and 2 gave mainly (73.6% combined yield) products with $(1\rightarrow 2)-\beta$ and $(1\rightarrow 3)-\beta$ linkages in the ratio 5:2.

NOTE

TABLE I

Compound	C-1	C-2	С-3	C-4	C-5	С-6	C-1' C-1"		C-3' C-3"				ОМе
7	98.8	81.7	72.8	69.6	71.7	60.5	105.6	70.7	72.2	68.0	75.0	60.4	54.2
11	98.9	70.3	84. 9	68.3ª	72.2 ^b	60.4	104.4	70.8	72.30	68.2ª	75.2	60.4	54.1
10	98.7	78.4	82.7	68.6	72.1	60.4	104.4 103.6	70.8 71.0	73.3 73.3	68.2 68.2	75.1 75.3	60.4 60.4	54.1
12	98.9	70.5	84.8	68.0	70.5	68.0	104.5 103.8	70.9 70.9	73.2 73.2	68.0 68.0	74.9 75.4	60.2 60.2	54.3
9							99.0	70.3	73.3	67.9	75.2	60.2	
5	96.5	76.2	72.4	69.9	71.5ª	60.3	96.5	68.7	69.2	68.3	70.9ª	60.7	54.3
8	99.8ª	70.1	82.5	68.7 ^b	72.1	60.4	99.4ª	69.4°	69.5°	68.9 ^b	71.1	60.4	54.4
6	95.7	72.9	80.6	68.4	72.1	60.3	95.7 103.3	68.8 70.7			70.9 75.4		54.3

 $^{13}\text{C-n.m.r.}$ chemical shifts (p.p.m.) for some methyl oligosaccharides in $(\text{CD}_3)_2\text{SO}$

a-cAssignments which may be reversed.

 CH_2OR^3 $HO OR^2 OR^1$ $S R^1 = \Omega - D - Galp, R^2 = R^3 = H$ $G R^1 = \Omega - D - Galp, R^2 = \beta - D - Galp, R^3 = H$ $R^1 = R^3 = H, R^2 = \alpha - D - Galp$ $IO R^1 = R^2 = \beta - D - Galp, R^3 = H$ $I1 R^1 = R^3 = H, R^2 = \beta - D - Galp$ $I2 R^1 = H, R^2 = R^3 = \beta - D - Galp$

EXPERIMENTAL

The general methods used are described elsewhere¹.

Condensation of methyl 4,6-O-benzylidene- α -D-glucopyranoside (1) with 2,3,4,6tetra-O-acetyl- α -D-galactopyranosyl bromide (3). — The reaction was carried out as described previously¹. Compound 1 (6.7 g) was dissolved in anhydrous dichloroethane (200 mL). Dry silver carbonate (21 g) and Drierite (36 g) were added, and the mixture was stirred for 2 h at room temperature in the dark with exclusion of moisture. Iodine (2.8 g) and 3 (32.6 g, 3.3 mol. equiv.) were added, and stirring was continued for 48 h at room temperature. The reaction mixture was filtered through Celite, and the inorganic solids were washed with chloroform. The combined filtrate and washings were evaporated to give a syrup, which was extracted with boiling water (3 × 300 mL). The resulting residue was dissolved in ethanol. Methyl 4,6-O-benzylidene-2-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)- α -D-glucopyranoside (4, 24%) crystallised from the mixture; m.p. 197–198°, $[\alpha]_D^{25} + 46°$ (c 1, chloroform)³. The filtrate was concentrated and the syrupy residue was treated with 60% acetic acid in water at 100° for 1 h. The solvent was removed and the residue was deacetylated conventionally with methanolic sodium methoxide. The sodium ions were removed using Dowex 50 (H⁺) resin, the solvent was removed, and the residue (5.5 g) was fractionated on a column (2.5 × 60 cm) of Dowex 1-X8 (HO⁻) resin (250 g). The column was eluted with aqueous 10% 1,4-dioxane (12-mL fractions), and the fractions were analysed by t.l.c. (1-propanol-ethyl acetate-water 3:2:1).

Fractions 31-45 contained traces of methyl D-glucopyranoside.

Fractions 50–74 contained methyl 2-*O*- α -D-galactopyranosyl- α -D-glucopyranoside (5; 180 mg, 2.1%), m.p. 198–200°, $[\alpha]_D^{25} + 189°$ (*c* 0.59, water). Acetylation gave the hepta-acetate, m.p. 104–105°, $[\alpha]_D^{25} + 180°$ (*c* 0.5, chloroform).

Anal. Calc. for C27H38O18: C, 49.84; G, 5.90. Found: C, 50.0; H, 5.91.

Acid hydrolysis of 5 gave D-glucose and D-galactose in the ratio 1:1.

Fractions 106–135 contained methyl 2-O- α -D-galactopyranosyl-3-O- β -D-galactopyranosyl- α -D-glucopyranoside (6; 170 mg, 1.4%), $[\alpha]_D^{25} + 107^\circ$ (c 0.85, water). Acetylation gave the deca-acetate, $[\alpha]_D^{25} + 95^\circ$ (c 0.6, chloroform).

Anal. Calc. for C₃₉H₅₄O₂₆: C, 49.89; H, 5.81. Found: C, 49.87; H, 5.72.

Acid hydrolysis of 6 gave D-glucose and D-galactose in the ratio 1:2.

Fractions 147–160 contained methyl 2- $O-\beta$ -D-galactopyranosyl- α -D-glucopyranoside (7; 860 mg, 10.2%), m.p. 252°, $[\alpha]_{D}^{25} + 77°$ (c 2.1, water)⁵.

Fractions 165–210 contained methyl 3-O- α -D-galactopyranosyl- α -D-glucopyranoside (8; 85 mg, 0.7%), $[\alpha]_D^{25} + 152^\circ$ (c 0.4, water). Acetylation gave the hepta-acetate, $[\alpha]_D^{25} + 130^\circ$ (c 1.25, chloroform).

Anal. Calc. for C₂₇H₃₈O₁₈: C, 49.84; H, 5.90. Found: C, 49.74; H, 5.85.

Acid hydrolysis of 8 gave D-glucose and D-galactose in the ratio 1:1.

Fractions 211–250 contained β -D-galactopyranosyl β -D-galactopyranoside (9; 900 mg, 3.8% relative to 3), m.p. 147–150°, $[\alpha]_D^{25} + 23°$ (c 2.3, water); lit.⁷ m.p. 108°, $[\alpha]_D + 20°$ (water). Acetylation gave the octa-acetate, $[\alpha]_D^{25} + 40°$ (c 2.6, chloroform).

Anal. Calc. for $C_{28}H_{38}O_{19}$: C, 49.55; H, 5.66. Found: C, 49.51; H, 5.55. Acid hydrolysis of 9 gave D-galactose only.

Fractions 255–310 contained methyl 2,3-di-O- β -D-galactopyranosyl- α -D-glucopyranoside (10; 460 mg, 3.7%), m.p. 247°, $[\alpha]_D^{25} + 60°$ (c 0.85, water). Acetylation gave the deca-acetate, $[\alpha]_D^{25} + 22°$ (c 1.36, chloroform).

Anal. Calc. for C₃₉H₅₄O₂₆: C, 49.89; H, 5.81. Found: C, 50.10; H, 5.73.

Acid hydrolysis of 10 yielded D-glucose and D-galactose in the ratio 1:2.

Fractions 320-490 contained methyl 3-O- β -D-galactopyranosyl- α -D-glucopyranoside (11; 2.47 g, 29.2%), m.p. 229-230°, $[\alpha]_D^{25} + 95°$ (c 4.1, water). Acetylation gave the hepta-acetate, m.p. 120-122°, $[\alpha]_D^{25} + 46°$ (c 1.5, chloroform).

Anal. Calc. for C27H38O18: C, 49.84; H, 5.90. Found: C, 49.82; H, 6.01.

Acetolysis⁵ of **11** gave 1,2,4,6-tetra-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-D-glucopyranose (**13**), $\lceil \alpha \rceil_{D}^{25} + 29^{\circ}$ (*c* 0.7, chloroform).

Anal. Calc. for C28H38O19: C, 49.55; H, 5.66. Found: C, 49.60; H, 5.82.

Deacetylation of 13 with methanolic sodium methoxide gave 3-O- β -D-galactopyranosyl-D-glucose (14), m.p. 204-205°, $[\alpha]_D^{25} + 85 \rightarrow +48^\circ$ (c 1, water); lit.⁸ m.p. 205-206°, $[\alpha]_D + 76.7 \rightarrow +41.2^\circ$ (water).

Fractions 492–570 contained methyl 3,6-di-O- β -D-galactopyranosyl- α -D-glucopyranoside (12; 510 mg, 4.1%), m.p. 244–246°, $[\alpha]_D^{25} + 60°$ (c 2, water). Acetylation gave the deca-acetate, $[\alpha]_D^{25} + 34°$ (c 1.35, chloroform).

Anal. Calc. for C₃₉H₅₄O₂₆: C, 49.89; H, 5.81. Found: C, 49.75; H, 5.67.

Acid hydrolysis of 12 yielded D-glucose and D-galactose in the ratio 1:2.

REFERENCES

- 1 A. TEMERIUSZ, B. PIEKARSKA, J. STĘPIŃSKI, AND J. RADOMSKI, Pol. J. Chem., 56 (1982) in press.
- 2 B. COXON AND H. G. FLECHER JR., J. Org. Chem., 26 (1961) 2892-2894.
- 3 Z. PAWLAK, A. TEMERIUSZ, AND A. MIODUSZEWSKA, Rocz. Chem., 47 (1973) 2373-2375.
- 4 J. KARKKAINEN, Carbohydr. Res., 14 (1970) 27-33.
- 5 A. TEMERIUSZ, B. PIEKARSKA, J. STĘPIŃSKI, AND J. RADOMSKI, Pol. J. Chem., 55 (1981) 783-791.
- 6 K. TAKEO, Carbohydr. Res., 77 (1979) 131-140.
- 7 H. BREDERECK, G. HÖSCHELE, AND K. RÜCK, Chem. Ber., 86 (1953) 1277-1286.
- 8 R. KUHN AND H. H. BAER, Chem. Ber., 87 (1954) 1560-1567.