399 ## Studies on Selective Preparation of Aromatic Compounds; 18¹. A New Preparative Method for Aryl 4-Hydroxyphenyl Ethers Masashi Tashiro*, Haruo Yoshiya, Takehiko Yamato Research Institute of Industrial Science, Kyushu University 86, Hakozaki, Higashi-ku, Fukuoka 812, Japan It has been previously reported that²⁻⁶ the *t*-butyl group of some phenolic compounds could be transalkylated to an aromatic solvent such as benzene or toluene in the presence of a Lewis acid such as aluminium chloride/nitromethane or titanium(IV) chloride. It has been also found that 4-*t*-butyl-2,4,6-trichlorocyclohexa-2,5-dien-1-one⁷ as well as 2,6-di-*t*-butyl-*p*-cresol^{8,9,10} could be used as a *t*-butylating agent for aromatic compounds under the influence of a Lewis acid such as aluminium chloride or aluminium chloride/nitromethane. The above results suggest that the aluminium chloride/nitromethane-catalyzed trans-*t*-butylation of 4-aryloxy-2,4,6-tris-[*t*-butyl]cyclohexa-2,5-dien-1-ones 1, which can easily be prepared according to the method reported by Müller et al.¹¹ might afford the corresponding aryl 4-hydroxyphenyl ethers 2. might be formed by further transalkylation of 2e, was formed in 68% yield. Based on the above result it can be concluded that, as 1a is an unstable liquid compound, 1e may be a more suitable starting compound than 1a for the preparation of 2a. HO $$C_4H_9-t$$ AlCl₃ / CH₃NO₂ / toluene C₄H₉-t C_{H₃} The starting compounds 1 were prepared according to Müller's method and the results are summarized in Table 2. $$t-C_{4}H_{9} \xrightarrow{O} C_{4}H_{9}-t \xrightarrow{AICI_{3} / CH_{3}NO_{2} / toluene, 60^{\circ}, 15 \text{ min}} + C_{4}H_{9}-t$$ $$1 \qquad \qquad 2 \qquad 3$$ $$1 \qquad \qquad b \qquad c \qquad d \qquad e \qquad f \qquad g \qquad h$$ $$Ar \xrightarrow{CH_{3} H_{3}C} \xrightarrow{CH_{3} H_{3}C} \qquad \qquad t-C_{4}H_{9} \xrightarrow{C} \qquad Br \xrightarrow{C} \qquad Br \xrightarrow{C}$$ The results of the aluminium chloride/nitromethane-catalyzed transalkylation of 1 in toluene are summarized in Table 1. As is shown in Table 1, the expected 2e was not obtained in the transalkylation of 1e, instead 2a, which **4-Bromophenyl 4-Hydroxyphenyl Ether (2 g); Typical Procedure:** To a solution of **1g** (4.1 g, 9 mmol) in toluene (143 ml) is added at 60° a solution of aluminium chloride (3.6 g, 27 mmol) in nitromethane (6 ml). After the reaction mixture has been stirred at Table 1. Preparation of Aryl 4-Hydroxyphenyl Ethers 2 by the Aluminium Chloride/Nitromethane-Catalyzed Transalkylation of 4-Aryloxy-2,4,6-tris[t-butyl]cyclohexa-2,5-dien-1-ones 1 | Prod-
uct | Yield ^b | m.p. (solvent)
(Lit. m.p.) | Molecular
formula ^c | I.R. (KBr) v _{max} [cm ⁻¹] | ¹ H-N.M.R. (CDCl₃)
δ [ppm] | |--------------|----------------------|--|---|---|--| | 2 a | 47 (68) ^d | 8385° (6080° PE)
(8485°) ¹⁻² | C ₁₂ H ₁₀ O ₂ (186.2) | 3520 - 3080 | 5.91 (s, 1 H); 6.7-7.4 (m, 9 H) | | 2 b | 31 | 39- 40° (60- 80° PE) | $C_{13}H_{12}O_2$ (200.2) | 3640-3080 | 2.30 (s, 3H); 4.91 (s, 1H); 6.75 7.5 (m, 8H) | | 2c | 71 | oil ^e | $C_{13}H_{12}O_2$ (200.2) | 3680-3080f | 2.18 (s, 3 H); 6.6-7.2 (m, 8 H); 7.41 (s, 1 H) | | 2d | 79 | 76.5~77.5° (60- 80° PE) | $C_{13}H_{12}O_2$ (200.2) | 3600-3120 | 2.28 (s, 3H); 5.05 (s, 1H); 6.5-7.3 (m, 8H) | | 2f | 57 | 91–91.5° (hexane) | $C_{13}H_{12}O_3$ (216.2) | 3600-3120 | 3.76 (s, 3 H); 5.75 (s, 1 H); 6.75-7.10 (m, 8 H) | | 2 g | 83 | 86 -87° (hexane)
(88°) ¹³ | C ₁₂ H ₉ BrO ₂ (265.1) | 3640-3080 | 3.50 (s, 1H); 6.7-7.5 (m, 8 H) | | 2h | 84 | 87-88° (hexane) | $C_{10}H_{12}O_2$ (164.2) | 3680 3080 | 4.95 (s, 1 H); 6.75–7.9 (m, 11 H) | ^a Reaction at 60° for 15 min; molar ratio of toluene: AlCl₃: 1 = 150:3:1. b Formation of t-butyltoluenes 3 confirmed by G.L.C. (Yanagimoto Gas Chromatograph G8 YR-101; column 30% high vacuum silicon grease, 2 m, carrier gas, helium 50 ml/min, rate of increase of column temperature 12°/min); 3 formed mainly as p-isomer with 2 3% of m-isomer. $^{^{\}circ}$ All products gave satisfactory microanalyses (C $\pm 0.26\%$, H $\pm 0.07\%$). d Yield of 2a starting from 1e, see text. ^e Benzoate formed as colorless needles, m.p. 59-60° (C₂H₅OH). f Neat between NaCl plates. 400 Communications SYNTHESIS Table 2. Preparation of 4-Aryloxy-2,4,6-tris[t-butyl]cyclohexa-2,5-dien-1-ones 1a-h | Prod-
uct | Yield
[%] | m.p.
(solvent) | Lit. m.p. | Molecular
formula ^a | I.R. (KBr)
v _{max} [cm ¹ | |--------------|--------------|--|-------------------|---|---| | 1a | 83 | oil | oil ¹⁴ | | | | 1 b | 73 | 157158° (dec.)
(CH ₃ OH) | | $C_{25}H_{36}O_2$ (368.6) | 1640, 1660 | | 1 c | 68 | 31–32°
(CH ₃ OH) | No. | $C_{25}H_{36}O_2$ (368.6) | 1640, 1660 | | 1 d | 77 | 71–72°
(CH ₃ OH) | 100 E000 E1 | $C_{25}H_{36}O_2$ (368.6) | 1640, 1660 | | 1 e | 82 | 91.5 92.5°
(CH ₃ OH) | 9192°11 | $C_{28}H_{42}O_2$ (410.6) | 1640, 1655 | | 1 f | 71 | 78-79°
(ether/CH ₃ OH) | 77-78°14 | C ₂₅ H ₃₆ O ₃ (368.6) | 1630, 1650 | | 1 g | 80 | 102-103° | | C ₂₄ H ₃₃ BrO ₂
(433.4) | 1635, 1660 | | 1 b | 74 | 7677° | 75~76°11 | C ₂₈ H ₃₆ O ₂ (404.6) | 1630, 1660 | ^a All products gave satisfactory microanalyses (C $\pm 0.32\%$, H $\pm 0.29\%$). 60° for 15 min, it is quenched with ice/water, and extracted with ether. The ether solution is extracted with 10% sodium hydroxide solution. The alkaline solution is acidified with 10% hydrochloric acid and extracted with ether. The ether solution is dried with sodium sulfate and evaporated in vacuo to afford 2g as colorless plates; yield: 2.08 g (83%): m.p. 86-87° (hexane). We thank Asahi Garasu Company for financial support. Received: January 23, 1978 ¹ Part 17. M. Tashiro, T. Yamato, Synthesis 1978, 214. M. Tashiro, H. Watanabe, O. Tsuge, Org. Prep. Proced. Int. 6, 107 (1974). ³ M. Tashiro, G. Fukata, T. Yamato, H. Watanabe, K. Oe, O. Tsuge, Org. Prep. Proced. Int. 8, 249 (1976). ^{M. Tashiro, H. Watanabe, O. Tsuge, Org. Prep. Proced. Int. 6, 117 (1974).} M. Tashiro, G. Fukata, S. Mataka, K. Oe, Org. Prep. Proced. Int. 7, 231 (1975). M. Tashiro, G. Fukata, J. Org. Chem. 42, 1208 (1977). ⁷ M. Tashiro, T. Yamato, unpublished works. M. Tashiro, G. Fukata, T. Yamato, Org. Prep. Proced. Int. 8, 263 (1976). ⁹ M. Tashiro, T. Yamato, Org. Prep. Proced. Int. 9, 151 (1977). ¹⁰ M. Tashiro, T. Yamato, G. Fukata, J. Org. Chem. in press. ¹¹ E. Müller, K. Ley, G. Schlechte, Chem. Ber. 90, 2660 (1957). ¹² C. Haussemann, E. Bäuer, Ber. Dtsch. Chem. Ges. 29, 2085 (1896). ¹³ Hoechst AG, French Patent 2000174 (1969); C.A. 72, 66648 (1970). ¹⁴ H.-D. Becker, J. Org. Chem. 29, 3068 (1964).