399

Studies on Selective Preparation of Aromatic Compounds; 18¹. A New Preparative Method for Aryl 4-Hydroxyphenyl Ethers

Masashi Tashiro*, Haruo Yoshiya, Takehiko Yamato

Research Institute of Industrial Science, Kyushu University 86, Hakozaki, Higashi-ku, Fukuoka 812, Japan

It has been previously reported that²⁻⁶ the *t*-butyl group of some phenolic compounds could be transalkylated to an aromatic solvent such as benzene or toluene in the presence of a Lewis acid such as aluminium chloride/nitromethane or titanium(IV) chloride. It has been also found that 4-*t*-butyl-2,4,6-trichlorocyclohexa-2,5-dien-1-one⁷ as well as 2,6-di-*t*-butyl-*p*-cresol^{8,9,10} could be used as a *t*-butylating agent for aromatic compounds under the influence of a Lewis acid such as aluminium chloride or aluminium chloride/nitromethane.

The above results suggest that the aluminium chloride/nitromethane-catalyzed trans-*t*-butylation of 4-aryloxy-2,4,6-tris-[*t*-butyl]cyclohexa-2,5-dien-1-ones 1, which can easily be prepared according to the method reported by Müller et al.¹¹ might afford the corresponding aryl 4-hydroxyphenyl ethers 2.

might be formed by further transalkylation of 2e, was formed in 68% yield. Based on the above result it can be concluded that, as 1a is an unstable liquid compound, 1e may be a more suitable starting compound than 1a for the preparation of 2a.

HO
$$C_4H_9-t$$

AlCl₃ / CH₃NO₂ / toluene

C₄H₉-t

C_{H₃}

The starting compounds 1 were prepared according to Müller's method and the results are summarized in Table 2.

$$t-C_{4}H_{9} \xrightarrow{O} C_{4}H_{9}-t \xrightarrow{AICI_{3} / CH_{3}NO_{2} / toluene, 60^{\circ}, 15 \text{ min}} + C_{4}H_{9}-t$$

$$1 \qquad \qquad 2 \qquad 3$$

$$1 \qquad \qquad b \qquad c \qquad d \qquad e \qquad f \qquad g \qquad h$$

$$Ar \xrightarrow{CH_{3} H_{3}C} \xrightarrow{CH_{3} H_{3}C} \qquad \qquad t-C_{4}H_{9} \xrightarrow{C} \qquad Br \xrightarrow{C} \qquad Br \xrightarrow{C}$$

The results of the aluminium chloride/nitromethane-catalyzed transalkylation of 1 in toluene are summarized in Table 1. As is shown in Table 1, the expected 2e was not obtained in the transalkylation of 1e, instead 2a, which

4-Bromophenyl 4-Hydroxyphenyl Ether (2 g); Typical Procedure: To a solution of **1g** (4.1 g, 9 mmol) in toluene (143 ml) is added at 60° a solution of aluminium chloride (3.6 g, 27 mmol) in nitromethane (6 ml). After the reaction mixture has been stirred at

Table 1. Preparation of Aryl 4-Hydroxyphenyl Ethers 2 by the Aluminium Chloride/Nitromethane-Catalyzed Transalkylation of 4-Aryloxy-2,4,6-tris[t-butyl]cyclohexa-2,5-dien-1-ones 1

Prod- uct	Yield ^b	m.p. (solvent) (Lit. m.p.)	Molecular formula ^c	I.R. (KBr) v _{max} [cm ⁻¹]	¹ H-N.M.R. (CDCl₃) δ [ppm]
2 a	47 (68) ^d	8385° (6080° PE) (8485°) ¹⁻²	C ₁₂ H ₁₀ O ₂ (186.2)	3520 - 3080	5.91 (s, 1 H); 6.7-7.4 (m, 9 H)
2 b	31	39- 40° (60- 80° PE)	$C_{13}H_{12}O_2$ (200.2)	3640-3080	2.30 (s, 3H); 4.91 (s, 1H); 6.75 7.5 (m, 8H)
2c	71	oil ^e	$C_{13}H_{12}O_2$ (200.2)	3680-3080f	2.18 (s, 3 H); 6.6-7.2 (m, 8 H); 7.41 (s, 1 H)
2d	79	76.5~77.5° (60- 80° PE)	$C_{13}H_{12}O_2$ (200.2)	3600-3120	2.28 (s, 3H); 5.05 (s, 1H); 6.5-7.3 (m, 8H)
2f	57	91–91.5° (hexane)	$C_{13}H_{12}O_3$ (216.2)	3600-3120	3.76 (s, 3 H); 5.75 (s, 1 H); 6.75-7.10 (m, 8 H)
2 g	83	86 -87° (hexane) (88°) ¹³	C ₁₂ H ₉ BrO ₂ (265.1)	3640-3080	3.50 (s, 1H); 6.7-7.5 (m, 8 H)
2h	84	87-88° (hexane)	$C_{10}H_{12}O_2$ (164.2)	3680 3080	4.95 (s, 1 H); 6.75–7.9 (m, 11 H)

^a Reaction at 60° for 15 min; molar ratio of toluene: AlCl₃: 1 = 150:3:1.

b Formation of t-butyltoluenes 3 confirmed by G.L.C. (Yanagimoto Gas Chromatograph G8 YR-101; column 30% high vacuum silicon grease, 2 m, carrier gas, helium 50 ml/min, rate of increase of column temperature 12°/min); 3 formed mainly as p-isomer with 2 3% of m-isomer.

 $^{^{\}circ}$ All products gave satisfactory microanalyses (C $\pm 0.26\%$, H $\pm 0.07\%$).

d Yield of 2a starting from 1e, see text.

^e Benzoate formed as colorless needles, m.p. 59-60° (C₂H₅OH).

f Neat between NaCl plates.

400 Communications SYNTHESIS

Table 2. Preparation of 4-Aryloxy-2,4,6-tris[t-butyl]cyclohexa-2,5-dien-1-ones 1a-h

Prod- uct	Yield [%]	m.p. (solvent)	Lit. m.p.	Molecular formula ^a	I.R. (KBr) v _{max} [cm ¹
1a	83	oil	oil ¹⁴		
1 b	73	157158° (dec.) (CH ₃ OH)		$C_{25}H_{36}O_2$ (368.6)	1640, 1660
1 c	68	31–32° (CH ₃ OH)	No.	$C_{25}H_{36}O_2$ (368.6)	1640, 1660
1 d	77	71–72° (CH ₃ OH)	100 E000 E1	$C_{25}H_{36}O_2$ (368.6)	1640, 1660
1 e	82	91.5 92.5° (CH ₃ OH)	9192°11	$C_{28}H_{42}O_2$ (410.6)	1640, 1655
1 f	71	78-79° (ether/CH ₃ OH)	77-78°14	C ₂₅ H ₃₆ O ₃ (368.6)	1630, 1650
1 g	80	102-103°		C ₂₄ H ₃₃ BrO ₂ (433.4)	1635, 1660
1 b	74	7677°	75~76°11	C ₂₈ H ₃₆ O ₂ (404.6)	1630, 1660

^a All products gave satisfactory microanalyses (C $\pm 0.32\%$, H $\pm 0.29\%$).

60° for 15 min, it is quenched with ice/water, and extracted with ether. The ether solution is extracted with 10% sodium hydroxide solution. The alkaline solution is acidified with 10% hydrochloric acid and extracted with ether. The ether solution is dried with sodium sulfate and evaporated in vacuo to afford 2g as colorless plates; yield: 2.08 g (83%): m.p. 86-87° (hexane).

We thank Asahi Garasu Company for financial support.

Received: January 23, 1978

¹ Part 17. M. Tashiro, T. Yamato, Synthesis 1978, 214.

M. Tashiro, H. Watanabe, O. Tsuge, Org. Prep. Proced. Int. 6, 107 (1974).

³ M. Tashiro, G. Fukata, T. Yamato, H. Watanabe, K. Oe, O. Tsuge, Org. Prep. Proced. Int. 8, 249 (1976).

<sup>M. Tashiro, H. Watanabe, O. Tsuge, Org. Prep. Proced. Int.
6, 117 (1974).</sup>

M. Tashiro, G. Fukata, S. Mataka, K. Oe, Org. Prep. Proced. Int. 7, 231 (1975).

M. Tashiro, G. Fukata, J. Org. Chem. 42, 1208 (1977).

⁷ M. Tashiro, T. Yamato, unpublished works.

M. Tashiro, G. Fukata, T. Yamato, Org. Prep. Proced. Int.
 8, 263 (1976).

⁹ M. Tashiro, T. Yamato, Org. Prep. Proced. Int. 9, 151 (1977).

¹⁰ M. Tashiro, T. Yamato, G. Fukata, J. Org. Chem. in press.

¹¹ E. Müller, K. Ley, G. Schlechte, Chem. Ber. 90, 2660 (1957).

 ¹² C. Haussemann, E. Bäuer, Ber. Dtsch. Chem. Ges. 29, 2085 (1896).

¹³ Hoechst AG, French Patent 2000174 (1969); C.A. 72, 66648 (1970).

¹⁴ H.-D. Becker, J. Org. Chem. 29, 3068 (1964).