On the Conformation of 1-Aryl-1,4-dihydro-3(2H)-isoquinolinones

Jerzy L. Mokrosz^{a)*}, Marek T. Cegla^{a)}, and Edward Szneler^{b)}

a) Department of Organic Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31343 Kraków, Poland ^{b)} Institute of Chemistry, Jagiellonian University, 3 Karasia St., 30-060 Kraków, Poland

Received March 14, 1991

¹H- and ¹³C-NMR spectra of the 1-aryl-1,4-dihydro-3(2H)-isoquinolinones 2a-I were examined. It was found that the 1-aryl group assumes a roughly axial position on the boat conformation of the heterocyclic ring in meta- and para-substituted derivatives only. However, the ortho-substituted 1-phenyl group occupies the quasi equatorial position.

Über die Konformation von 1-Aryi-1,4-dihydro-3(2H)-isochinolonen

¹H- und ¹³C-NMR Spektren der 1-Aryl-1,4-dihydro-3(2H)-isochinolone 2a-1 wurden untersucht. Es wurde festgestellt, daß sich die 1-Arylgruppe nur in meta- und para-substituierten Derivaten in nahezu axialer Stellung der Wannenform des heterocyclischen Ringes befindet. Die ortho-substituierte 1-Phenylgruppe nimmt jedoch die quasi-äquatoriale Stellung ein.

The importance of 1-aryl-1,4-dihydro-3(2H)-isoquinolinones as synthetic intermediates and biologically active compounds has been reflected in the development of numerous methods for their preparation¹⁻³⁾. 1-Phenyl-1,4dihydro-3(2H)-isoquinolinone (2a) was first prepared by Deák et al.⁴⁾ by cyclization of benzaldehyde and benzyl cyanide in polyphosphoric acid (PPA). Several 1-aryl-1,4-dihydro-3(2H)-isoquinolinones, substituted at different positions, have also been synthesized by this method⁵⁻¹⁰⁾. A kinetic study of the reaction led to the conclusion that the corresponding bis-amide 1 is formed as an intermediate, which then undergoes rapid cyclization with elimination of aryl-acetamide¹¹⁾. The electron impact induced fragmentation pathways, and conformation of some 3(2H)-isoquinolinones was studied as well¹²⁻¹⁴⁾.

Recently we described our results of a conformational analysis of some cyclic amides incorporated into the ring system containing a β -carboline fragment^{15,16}). On the other hand, one of the 1,2,3,4-tetrahydro-\beta-carbolin-1-one derivatives is a very potent atypical antidepressant agent¹⁷). We also put forward a hypothesis that the specific nature of the amide bond in such derivatives is important for their CNS activity¹⁸⁾.

In order to pursue our structure-activity relationship studies with CNS agents, in the present paper we have discussed conformations of the 1-aryl-1,4-dihydro-3(2H)-isoquinolinones 2a-l in solution.

All the investigated compounds were prepared according to Deák et al.^{3,8,9)}, as shown in Scheme 1.

¹H- and ¹³C-NMR chemical shifts of compounds 2a-I are listed in Tables 1 and 2. The data were assigned by correlation with the spectra of the 1-phenyl-1,4-dihydro-3(2H)-isoquinolinone (2a)¹⁴⁾. Simple decoupling experiments were carried out for the assignment of some resonance signals in ¹H-NMR spectra, and an analysis of the signal multiplicity in ¹³C-NMR spectra was also helpful for identification of some resonances.

Tóth et al.¹³⁾ concluded that the 1-phenyl group of the derivative 2a occupies a quasi axial position on the boat conformation of the heterocyclic ring (Fig. 1, conformer B). A more detailed NMR study indicated that this compound has not a homogeneous conformation, and in the A \neq B

equilibrium a considerable contribution of conformer A must be taken into account¹⁴). However, in view of our results, this conclusion requires some modifications.

Fig. 1: The boat conformations of compounds 2a-l

There are several characteristic chemical shifts and coupling constants in the ¹H-NMR spectra which are diagnostic for conformation determination of the investigated compounds (Table 1).

Signals of the 1-H and 2-H atoms appear as doublets in the spectra of the investigated derivatives 2a-l; the vicinal coupling constants ${}^{3}J(1,2)$ and ${}^{3}J(2,1)$ are shown in Table 1.

The dihedral angle (φ) between H1-C1-N2-H2 was estimated from the ³J(2,1) coupling constants using a basic *Karplus* equation (1)¹⁹.

$${}^{3}J(2,1) = 4.5\cos 2\varphi - 0.5\cos \varphi + 4.22$$
 (1)

The calculated values of the dihedral angle are $\varphi = 46-49^{\circ}$ for the 1-phenyl compound 2a and all the meta and para substituted derivatives 2b, 2d, 2e, 2g-2i, 2k, and 2l. For the *ortho*-substituted derivatives 2c and 2f the dihedral angle is *ca*. 115°, and for the 2'-nitro derivative 2j it is *ca*. 54° (Fig. 2). The above results indicate that the 1-aryl group should assume the quasi axial position (conformer **B**, Fig. 1) in compound 2a and all the *meta*- and *para*-substituted derivatives of 2, while in the *ortho*-substituted derivatives 2c, 2f, and 2j this group should occupy a roughly equatorial steric position (conformer A).

The position of the 2-NH resonance signal is indicative of a steric arrangement of the amide bond. In the case of the 2'-chloro (2c) and 2'-methyl (2f) derivatives this signal is shifted upfield by ca. 0.2 ppm in relation to the respective *meta*- and *para*-substituted compounds, whereas in the case of the 2'-nitro derivative 2j the observed upfield shift is

Table 1: δ (¹H) Chemical shifts (in ppm) and characteristic coupling constants (in Hz) of compounds 2a-l in DMSO-d₆

Hydrogen atom	2a ==	2b	<u>2c</u>	2d	2 <u>e</u>	≧Ĩ	<u>2</u> g	<u>2h</u>	<u>21</u>	<u>2j</u>	<u>2k</u>	<u>21</u>
1H	5.75	5.75	6.18	5.80	5.76	5.98	5.69	5.69	5.60	6.34	5.97	5.95
³ J(1,2)	3.5	3.5	1.6 ^{a)}	3.6	3.4	1.3 ^{a)}	3.5	3.5	3.3	1.7 ^{a)}	3.6	3.7
2-NH	8.68	8.68	8.52	8.73	8,68	8.46	8.61	8.63	8.51	8.43	8.82	8.81
³ J(2,1)	3.4	3.5	1.7	3.5	3.3	1.6	3.4	3.4	3.3	2.6	3.6	3.7
4-H ^{eq}	3.72	3.71	3.86	3.74	371	3.78	3.73	3.69	3.66	3.90	3.74	3.76
4-H ^{ax}	3.56	3.55	3.70 ^{b)}	3.53	3.55	3.68 ^{b)}	3.55	3.55	3.53	3.72 ^{b)}	3.58	3.59
² J(4,4)	19.7	19.8	20.3	19.8	19.7	20.0	19.7	19.6	19.7	20.4	19.8	19.8
5-H	C)	c >	7.34	c)	c)	7.35	C)	cì	c)	7.36	7.45	7.43
6-H	c>	c)	7.28	c)	C)	e)	c)	c }	c)	7.29	c)	c)
7- H	c)	c)	7.25	c)	c)	c)	7.18	c)	c)	7.26	c>	c)
8-H	c)	c)	7.09	c)	c>	6.90	7.19	7.23	c)	7.14	c>	c)
2 '- H	c)	7.62		c)	7.50		c)	۹	7.16		8.26	7.70
3'-H	c)	7.35	7•59 ^{d)})	7.40	c)		7.25	6.76	8.07		8.29
4′_ H	c)		7.41 ^{e)}	c)		C	c)			7.64	8.23	
5'-H	c)	7.35	7.42 ^e) _{c)}	7.40	¢	c)	7.25	6.76	7.77	7.74	8.29
6'-H	c)	7.62	7.60 ^d) 0)	7.50	7.10	C)	c)	7.16	7.48	7.83	7.70

^{a)} This coupling constant may be also assigned to ${}^{5}J(1,4^{ax})$

^{b) $5J(4^{ax}, 1) = 1.5$ Hz}

^{c)} Strongly coupled, overlapping signals between: 7.45-7.29 for 2a, 7.35-7.27 for 2b, 7.49-7.29 for 2d, 7.37-7.28 for 2e, 7.36-7.21 for 2f, 7.37-7.25 for 2g, 7.33-7.25 for 2h, 7.31-7.25 for 2i, 7.39-7.30 for 2k, and 7.40-7.30 for 2l.

d.e) Assignments for particular pairs of signals in column may be interchanged

Fig. 2: The dihedral angles H_1 -C₁-N₂-H₂ calculated from eq. (1): a - $\varphi = 46$ -49° for 2a, 2b, 2d, 2e, 2g-2i, 2k, and 2l: b - $\varphi \approx 115^\circ$ for 2c and 2f; c - $\varphi \approx 54^\circ$ for 2j.

even greater and reaches *ca*. 0.4 ppm (Table 1). The observed effect permits us to conclude that the amide bond in 2c, 2f, and 2j is significantly twisted as a result of steric hindrance of both the bulky *ortho*-substituted phenyl group and the 1-H and 4-H diaxial interaction in conformer A. The 4-H₂ signals of *ortho*-derivatives are shifted downfield by *ca*. 0.1 - 0.15 ppm in relation to the *meta* and *para* analogues. The observed downfield shift of the signals may be due to a deshielding effect of the neighbouring aromatic ring. The deshielding effect can be observed only in the case of the flattening of a C-3 - C-4 - C-10 fragment of the boat conformer **A**. Further evidence for the flattening of this fragment is backed up by the value of geminal coupling constants ²J(4,4) for **2c**, **2f**, and **2j**, which is slightly higher (by 0.3 - 0.6 Hz) in comparison with the respective meta and para derivatives. The value of the geminal coupling constant depends on the angle between the π orbital of the aromatic ring or the carbonyl group and the C-H bond^{20,21}). This angle in the flattened conformation of the heterocyclic ring is ca. 30°, where ²J(4,4) reaches the maximum.

It is well-known that the homoallylic coupling constants ${}^{5}J(1,4)$ depend on the relative orientation of the coupled protons. The following order J(ax,ax) > J(ax,eq) >> J(eq,eq)

No.	<u></u> ه ((ppm) ^{a)}	Carbon	S (ppm) ^{a)}			
	1-0	3-00	atom				
<u>2a</u>	58.6	169.8	4	36.3 - 35.5			
	(60.0)	(171.1)		(36.5 - 35.9)			
<u>2</u> ⊵	57.9	169.8	5	128.1 - 127.3			
	(59.4)	(171.3)		(128.4 - 127.7)			
<u>2</u> <u>c</u>	55.9	169.2	6	127.9 - 126.9			
	(56.6)	(170.4)		(128.3 - 127.4)			
<u>2₫</u>	58.0	169.8	7	127.4 - 126.5			
	(59.5)	(171.2)		(127.2 - 126.6)			
<u>2</u> ≘	57.9	169,4	8	126.7 - 126.3			
	(59.3)	(171.1)		(127.2 - 126.5)			
2 f	56.0	169.3	9	136.2 - 133.6			
	(57.5)	(170.6)		(135.6 - 135.0)			
2 <u>e</u>	58.7	169.8	10	132.1 - 131.7			
	(60.1)	(171.0)		(132.8 - 131.2)			
<u>2h</u>	58.4	169.8					
	(59.8)	(171.1)					
21	58.2	169.8					
	(59.6)	(170.9)					
<u>21</u>	53.7	169.0					
	(55.1)	(169.9)					
2k	57.7	169.9					
	(59.4)	(171.1)					
21	58.0	169.9					
	(59.4)	(171.2)					

Table 2: 13 C Chemical shift of the 1-C and 3-CO atoms, and ranges of the skeleton carbon atoms 4 - 10

^{a)} Downfield from TMS, in DMSO-d₆ solution; data in parentheses for solutions in $CDCl_3$.

was established for systems with aromatic bonds, with typical values of 2.5, 1.5, and 0.5 Hz, respectively²¹⁻²³⁾. Toth et al. quoted a value of cis ⁵J(1,4) = 1.9 Hz, obtained for compound $2a^{14}$. On the other hand, we observed a homoallylic coupling constant ⁵J(1,4) = 1.5 Hz, yet only in the ortho-substituted derivatives 2c, 2f, and 2j (Table 1). This finding supports our conclusion that compounds 2c, 2f, and 2j exist predominantly in conformation A with a flattened C-3 - C-4 - C-10 fragment where the 4-H_{ax} atom is deviated from the axial position. Nevertheless, the other investigated derivatives would rather exist in conformation **B**, since the cis ⁵J(1eq,4eq) and trans ⁵J(1eq,4ax) coupling constants are not observed, thus it can be assumed that their values are lower than 1 Hz.

The value of the 8-H atom chemical shift is also indicative of the steric arrangement of the 1-aryl group. The 8-H resonance signal in the ortho substituted derivatives is shifted upfield by at least 0.2 ppm in relation to their *meta* and *para* analogues. It means that the 8-H atom in 2c, 2f, and 2j is shielded by the quasi equatorial 1-aryl group, since the planes of the two aromatic rings are nearly perpendicular¹⁴.

The ¹³C-NMR spectra of the investigated compounds 2a-l, recorded for both CDCl₃ and DMSO-d₆ solution, are very similar (Table 2). The signals of the 1,4-dihydro-3(2H)-isoquinolinone skeleton carbon atoms 4-10 (Table 2) and the 1-aryl substituent were found at their typical values and within a narrow range from those values expected^{14,24}). The C-1 resonance signal is almost insensitive to the electronic nature of the 1-phenyl group substitents. However, this signal is shifted upfield by 2.0 - 4.3 ppm in compounds 2c, 2f, and 2j (Table 2), owing to a steric hindrance of the orthosubstituted 1-phenyl group. The 3-CO chemical shifts support the conclusion drawn from the ¹H-NMR spectra that the amide bond in the derivatives 2c, 2g, and 2j is not planar. The conjugation within the amide bond decreases for a non-planar conformation, since the 3-CO signal shifts upfield by 0.5 - 0.9 ppm in DMSO-d₆ solution, and by 0.4 -1.3 ppm for solution in CDCl₃ (Table 2).

In conclusion, the results of our present investigation clearly indicate that 1-phenyl-1,4-dihydro-3(2*H*)-isoquinolinone (2a) and its *meta*- and *para*-substituted derivatives in the phenyl ring (2b, 2d, 2e, 2g-2i, 2k, 2l) exist predominantly in conformation **B** (Fig. 1). However, the *ortho*-substituted derivatives 2c, 2f, and 2j assume the conformation shown in Fig. 3. In this conformation the 1-aryl group is

Fig. 3: Observed conformation of the compounds 2c, 2f, and 2j.

nearly perpendicular to the fused aromatic ring and is placed on the quasiequatorial position of the flattened (at the C-3 -C-4 - C-10 fragment) boat conformation of the heterocyclic ring with a twisted amide bond.

Experimental Part

Materials and apparatus: syntheses of the investigated compounds are described: 1a⁷⁾, 1c-e, 1h-1⁵⁾, 1f.g.j, 2f.g.j.1⁸⁾, and 2a, c-e,h,k⁶⁾.- Uncorrected m.p.s: Boetius apparatus (Analytic, Dresden).- E'emental analyses: Institute of Organic Chemistry, PAS, Warsaw.- ¹³C-NMR spectra: Bruker 300; 75.47 MHz, DMSO-d₆, and Tesla BS 55672; 25 MHz, CDCl₃.- ¹H-NMR spectra: Bruker 300, 300 MHz, CDCl₃, TMS as internal standard.-Mass spectra: LKB 9005.

Preparation of bis[phenylacetamides] (1)

To a mixture of glacial acetic acid (10 ml) and 1 ml of conc. H_2SO_4 were added 0.05 mol of the appropriate aldehyde under stirring; then the mixture was left at a room temp. for 10 min and then phenylacetamide (13.5 g, 0.1 mol) was added. The mixture was left for 24 h at a room temp, and was then diluted with water (50 ml). The precipitate was filtered off and washed with water and acetone. The crude product was recrystallized from ethanol.

N,N'-(4'-Bromophenyl)-bis[phenylacetamide](1b)

Colourless crystals, 18.5 g (84%), m.p. 248-250°C.- $C_{23}H_{21}BrN_2O_2$ (437.3) Calcd. C 63.2 H 4.8 N 6.4 Found C 63.2 H 4.7 N 6.5.

N,N'-[4'-(Dimethylamino)phenyl]-bis[phenylacetamide](1i)

Pale yellow crystals, m.p. 209-212°C (decomp.).- $C_{25}H_{27}N_3O_2$ (401.5) Calcd. C 74.8 H 6.8 N 10.5 Found C 74.6 H 6.8 N 10.5.

Preparation of derivatives 2

A suspension of 1 (0.015 mol) in PPA⁶⁾ (110 g) was stirred for 5 h at a room temp. and was then left overnight. The mixture was poured into water (400 ml), adjusted to pH 8 with 25% ammonia, heated to boiling, and the precipitate was filtered off. The crude product was washed with hot water and recrystallized from ethanol.

1-(4'-Bromophenyl)-1,4-dihydro-3(2H)-isoquinolinone(2b)

Colourless crystals, 2.5 g (55%), m.p. 191-193°C.- $C_{15}H_{12}BrNO$ (302.2) Calcd. C 59.6 H 4.0 N 4.6 Found C 59.7 H 3.8 N 4.7.- MS (70 eV): m/z = 301 (27, M⁺; ⁷⁹Br), 300 (12), 272 (3), 146 (100), 118 (24).

1-[4'-(N,N'-Dimethylamino)phenyl]-1,4-dihydro-3(2H)-isoquinolinone(2i)

Pale yellow crystals, 3.1 g (78%), m.p. 178-180°C.- $C_{17}H_{18}N_2O$ (266.3) Calcd. C 76.7 H 6.8 N 10.5 Found C 76.8 H 6.8 N 10.6.- MS (70 eV): m/z = 266 (100, M⁺), 265 (44), 237 (3), 146 (12), 118 (6).

References

- R. Kunstmann and R. Cranzer, Ger. Pat. 2,309,367, Hoechst AG (1974); C.A. 82, 4141 (1975).
- 2 G. Deák, M. Doda, K. Gall-Istók, and L. Grygory, Ger. Pat. 2,225,669, E. Gy. Gyogyszervegyeszet, Gyar (1972); C.A. 78, 84277 (1973).
- 3 G. Deák, K. Gall-Istók, and L. Sterk, Acta Chim. Acad. Sci. Hung. 88, 87 (1976); C.A. 84, 179999s (1976).
- 4 Z. Csürös, G. Deák, and I. Hoffmann, Acta Chim. Acad. Sci. Hung. 55, 125 (1968); C.A. 68, 78103j (1968).
- 5 Z. Csürös, G. Deák, M. Haraszthy-Papp, and I. Hoffmann, Acta Chim. Acad. Sci. Hung. 59, 119 (1969); C.A. 70, 77545j (1969).
- 6 Z. Csürös, G. Deák, I. Hoffmann, and A. Török-Kalmar, Acta Chim. Acad. Sci. Hung. 60, 177 (1969); C.A. 71, 38775k (1970).
- 7 E.E. Gilbert, Synthesis, 30 (1972).
- 8 G. Deák, K. Gall-Istók, L. Hazai, and L. Sterk, Synthesis 1975, 393.

- 9 G. Deák, K. Gall-Istók, and L. Hazai, Acta Chim. Acad. Sci. Hung. 84, 477 (1975); C.A. 83, 9420h (1975).
- 10 L. Hazai and G. Deák, Acta Chim. Hung. 121, 237 (1986); C.A. 106, 213726k (1987).
- 11 G. Deák, K. Gall-Istók, Z. Kalman, and J. Haskó-Breuer, Acta Chim. Acad. Sci. Hung. 76, 299 (1973); C.A. 79, 65392e (1973).
- 12 G. Deák, P. Fröyer, K. Gall-Istók, and J. Möller, Acta Chim. Acad. Sci. Hung. 77, 217 (1973); C.A. 79, 145508n (1973).
- 13 G. Tóth, L. Hazai, G. Deák, and H. Duddeck, Liebigs Ann. Chem. 1978, 1103.
- 14 G. Tóth, L. Hazai, G. Deák, H. Duddeck, H. Kühne, and M. Hricovini, Tetrahedron 44, 6861 (1988).
- 15 S. Misztal, M. Dukat, and J.L. Mokrosz, J. Chem. Soc. Perkin Trans. 1, 2311 (1990).
- 16 S. Misztal, Z. Bielecka, and J.L. Mokrosz, J. Chem. Soc. Perkin Trans. I, in press.

- 17 B. Wiczynska, L. Antkiewicz-Michaluk, A. Pilc, E. Chojnacka-Wójcik, and E. Przegalinski, Pol. J. Pharmacol. Pharm. 41, 331 (1989); C.A. 113, 91318q (1990).
- 18 J. Boksa, S. Misztal, E. Chojnacka-Wójcik, P. Bartyzel, Z. Bielecka, M.T. Cegla, M. Dukat, B. Duszynska, L. Castol-Lewinska, A. Gródekka, and J.L. Mokrosz, J. Med. Chem., in press.
- 19 M. Karplus, J. Chem. Phys. 30, 11 (1959).
- 20 S. Sternhell, Quart. Rev. 23, 236 (1969).
- 21 A.W. Brinkmann, H. Gordon, R.G. Harvey, P.W. Rabideau, J.B. Stothers, and A.L. Ternay, J. Am. Chem. Soc. 92, 5912 (1970).
- 22 M.C. Grossel, Tetrahedron Lett. 21, 1075 (1980).
- 23 A.K. Cheetham, M.C. Grossel, and J.M. Newsam, J. Am. Chem. Soc. 103, 5363 (1981).
- 24 H.-O. Kalinowski, S. Berger, and S. Braun. Carbon-13 NMR Spectroscopy, Wiley and Sons, Chichester, New York, 1988.

[Ph924]