Metal Porphyrins

DOI: 10.1002/anie.200501943

The Importance of a β-β Bond for Long-Range Antiferromagnetic Coupling in Directly Linked Copper(II) and Silver(II) Diporphyrins**

Takahisa Ikeue, Ko Furukawa, Hiroshi Hata, Naoki Aratani, Hiroshi Shinokubo, Tatsuhisa Kato,* and Atsuhiro Osuka*

Magnetic exchange coupling between distant metal centers is a major topic in the field of magnetochemistry.^[1] Although a

[*]	Prof. Dr. T. Kato Department of Chemistry Graduate School of Science Josai University Sakado 350–0295 (Japan) Fax: (+81) 49-271-7985 E-mail: rik@mail.josai.ac.jp Dr. T. Ikeue, H. Hata, Dr. N. Aratani, Prof. Dr. H. Shinokubo, Prof. Dr. A. Osuka Department of Chemistry Graduate School of Science Kyoto University and Core Research for Evolutional Science and Technology (CREST) Japan Science and Technology Agency Sakyo-ku, Kyoto 606-8502 (Japan) Fax: (+81) 75-753-3970 E-mail: osuka@kuchem.kyoto-u.ac.jp Dr. K. Furukawa Institute for Molecular Science
Falada?	Myodaiji, Okazaki 444-8585 (Japan)
[**]	of Education, Culture, Sports, Science, and Technology, Japan (no.

- of Education, Culture, Sports, Science, and Technology, Japan (no. 15350022 and 21st Century COE on Kyoto University Alliance for Chemistry) and by the International Innovation Center of Kyoto University.
 - Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

great number of covalently linked oligomacrocycles (e.g. porphyrins or phthalocyanines) have so far been prepared, only a few such molecules have been tested for the exploitation of long-range magnetic coupling.^[2,3] One difficulty in the use of these metalated macrocycles for magnetic coupling may be exemplified by the work of Eaton et al., in which a -J value of only about 0.5 cm⁻¹ was detected for a face-to-face coplanar bis-Cu^{II} diporphyrin with a short center-to-center distance of around 4.1 Å.^[2a] However, suitably arranged intervening bridges may help magnetic communication between distant metal centers.^[3]

In recent years, we have explored a series of directly linked diporphyrins, including the meso-meso singly linked diporphyrin 1,^[4a] the *meso*- β singly linked diporphyrin 2,^[4b,e] the meso- β , β -meso doubly linked diporphyrin **3**,^[4c,e] and the *meso-meso*, β - β , β - β triply linked diporphyrin 4.^[4d,e,f] Because of their direct covalent linkages, these diporphyrins exhibit a large electronic interaction, which increases in the order 2 < $1 \ll 3 \ll 4$, as judged from the absorption spectra.^[4] In these diporphyrins, two metal centers that are connected by various σ -bond networks are kept strictly apart due to the center-tocenter distances of 8.34, 8.91, 8.60, and 8.42 Å for 1, 2, 3, and 4, respectively.^[5] Herein we report antiferromagnetic coupling in bis- Cu^{II} and bis- Ag^{II} complexes of **1–4**. It is known that the unpaired spin of both Cu^{II} and Ag^{II} porphyrins is localized in the $d_{x^2-y^2}$ orbital, which leads to a situation where the unpaired electrons can be delocalized into the porphyrinic π -electronic network only through a σ -bond pathway.^[6] In this context, the diporphyrins 1-4 constitute a nice set for systematic studies on the dependence of antiferromagnetic interactions on a direct linkage.

The free-base diporphyrins 1–4 were prepared by the reported methods^[4] and metalated with Cu(OAc)₂ and AgOAc to afford 1Cu–4Cu and 1Ag–4Ag, respectively (Scheme 1). The effective magnetic moments (χT) at 300 K

Scheme 1. Directly linked porphyrins 1 M-5 M. M: Cu^{II}, Ag^{II}.

Angew. Chem. Int. Ed. 2005, 44, 6899-6901

© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

InterScience 6899

were determined to be 0.82–0.87 emu K mol⁻¹ for **1Cu–4Cu**, thus indicating the presence of two magnetically uncoupled spin doublets (Figure 1a; see also Supporting Information (SI)). Variable-temperature magnetic susceptibility measurements revealed that the χT values of **1Cu**, **2Cu**, and **3Cu** are nearly temperature-independent in the range 2–300 K, with essentially constant values of about 0.8 emu K mol⁻¹.

Figure 1. Variable-temperature magnetic susceptibility measurements in the range 2–300 K: a) **3 Cu** and **3 Ag**, b) **4 Cu** and **4 Ag**. The solid lines represent the fitting curves based on the Bleaney–Bowers equation.

The mean g values in the EPR spectra of 1Cu, 2Cu, and **3Cu** in frozen toluene at 4.0 K were 2.08, 2.13, and 2.13 (see SI), respectively, which were reproduced as a simple sum of an isolated Cu^{II} porphyrin. In contrast, the χT value of **4Cu** was found to drop sharply at temperatures below 20 K and to reach a value of $0.34 \text{ emu K mol}^{-1}$ at 2.0 K (Figure 1b). This temperature dependence is indicative of Curie law behavior with a weak antiferromagnetic coupling between the two copper(II) ions. A least-squares fit with the Bleaney-Bowers equation gave a -J value of 1.43 cm⁻¹ for **4Cu**. In line with the χT measurement, the EPR spectrum of 4Cu at the mean g value of 2.11 could not be reproduced as a sum of isolated Cu^{II} porphyrins but as two magnetically interacting Cu^{II} porphyrins. This means that the spectrum of 4Cu is due to the thermally populated S = 1 triplet state above the S = 0 ground state.

The magnetic properties of **1Ag-4Ag** were also examined. In the range 2–300 K, the χT values of **1Ag-3Ag** are temperature independent (ca. 0.8 emu K mol⁻¹; Figure 1 a), thus indicating the presence of two magnetically uncoupled spin doublets, while the χT values of **4Ag** exhibit a sharp drop below 20 K, reaching a value of 0.09 emu K mol⁻¹ at 2.0 K (see SI and Figure 1 b). The mean g values in the EPR spectra of **1Ag-4Ag** in frozen toluene are 2.06, 2.07, 2.06, and 2.06, respectively. The spectra of **1Ag-3Ag** were reproduced as a simple sum of isolated Ag^{II} porphyrins, whereas that of **4Ag** could be reproduced as two magnetically interacting Ag^{II} porphyrins, similarly to the case of 4Cu (see SI). The least-squares fit with the Bleaney–Bowers equation gave a -J value of 3.64 cm⁻¹ for 4Ag (Figure 1b).

The marked differences observed between the magnetic coupling behaviors of **4M** and **1M–3M** led us to consider the importance of a β – β bond for effective long-range magnetic coupling, since such a linkage only exists in **4M**. We thus prepared a new β – β singly linked diporphyrin **5M** from a β -borylated porphyrin precursor.^[7] Both bis-metalated complexes **5Cu** and **5Ag** exhibit long center-to-center distances of around 9.63 Å and the lowest excitonic coupling in the absorption spectra in the series. Nevertheless, as shown in Figure 2, both the χT values of **5Cu** and **5Ag** exhibit

Figure 2. Variable-temperature magnetic susceptibility measurements in the range 2–300 K: a) **5 Cu** and b) **5 Ag**. The solid lines represent the fitting curves based on the Bleaney–Bowers equation.

temperature-dependent behavior at low temperature, reaching values of 0.65 and 0.24 emu K mol⁻¹ at 2.0 K, respectively. The least-squares fit of the χT values with the Bleaney– Bowers equation provided -J values of 0.55 and 1.73 cm⁻¹, respectively. These results clearly indicate the critical role of a direct β - β bond in the long-range antiferromagnetic coupling.

Although excited triplet states are present in **4Cu**, **4Ag**, **5Cu**, and **5Cu**, no EPR signal was observed at the half field. This can be accounted for in terms of a small fine-structure interaction |D| in the triplet states (see SI) of these diporphyrins.^[8] The |D| value should become smaller with increasing spin-spin distance. Actually, a simple estimation of |D| for **4M** and **5M** led to a prediction that the "forbidden transition" at the half field is hardly observed in these cases (see SI); this seems to be a general feature of diporphyrins with a large center-to-center distance.

The critical importance of a direct β - β bond can be explained in terms of the spin densities of Cu^{II} and Ag^{II} porphyrin monomers, as calculated by the DFT method at the B3LYP level. The 6-31G* basis set was employed except for Cu and Ag, for which a basis set consisting of the Stuttgart effective core potential was used. In both cases, the calculations confirmed that the unpaired electron in the d_{x²-y²}

orbital develops only at the β position and not at the *meso* position (see SI), thus highlighting the importance of a direct β - β bond. In fact, the calculated singly occupied MOs (SOMOs; Figure 3) of a model compound for **4Cu**, in which

Figure 3. Two calculated SOMOs of a model for 4Cu in the S = 1 state.

all *meso* substituents were replaced with hydrogen, indicate that the spin orbital of the copper porphyrin interacts only through the β - β bond in the S=1 state (Figure 3a). In addition, the DFT calculations support our interpretation of the EPR measurements, namely that the S=0 ground state lies below the S=1 state.

The antiferromagnetic couplings are larger in the Ag^{II} complexes than in their Cu^{II} counterparts. Since the spin distribution patterns are similar due to the spin location in the $d_{y^2-y^2}$ orbital, the observed difference may be attributed to different spin densities. The spin density distribution via the σcontact contribution can be estimated by a ²H NMR method. Typically, the ²H NMR spectrum of Cu^{II}(tpp) exhibits the pyrrole β^{-2} H signal at around $\delta = 41$ ppm as a broad signal,^[9] while the signals of Ag^{II}(tpp) are too broad to be detected, thus indicating that the σ -contact contribution is larger for Ag^{II} porphyrin than Cu^{II} porphyrin. The fact that **5**Ag lies roughly on the long-range limit predicted by the Coffman-Buettner equation^[10] suggests that the direct β - β bond allows an effective σ-bond pathway for long-range antiferromagnetic coupling between distal paramagnetic metal ions in porphyrins (see SI).

In conclusion, we have shown that antiferromagnetic coupling is only effective for **4Cu**, **4Ag**, **5Cu**, and **5Ag**, thus underlining the crucial importance of a direct β - β bond. However, even in the extensively π -conjugated diporphyrins **4Cu** and **4Ag**, the long-range antiferromagnetic interaction is considered to propagate via a β - β σ -bond pathway. These results will be quite useful for further molecular design of magnetically coupled molecules. The exploration of higher

Cu^{II} and Ag^{II} porphyrin arrays is an attractive subject that is actively being pursued in our laboratory.

Received: June 6, 2005 Published online: October 7, 2005

Keywords: copper · magnetochemistry · metal-metal interactions · porphyrinoids · silver

- [1] O. Kahn, Molecular Magnetism, VCH, New York, 1993.
- [2] a) S. S. Eaton, G. R. Eaton, C. K. Chang, J. Am. Chem. Soc. 1985, 107, 3177; b) J. Wojacyznski, L. Latos-Grażyński, P. J. Chmielewski, P. V. Calcar, A. L. Balch, *Inorg. Chem.* 1999, 38, 3040; c) M. Zhao, C. Zhong, C. Stern, A. G. M. Barrett, B. M. Hoffman, *Inorg. Chem.* 2004, 43, 3377.
- [3] Some directly linked oligoporphyrins have been used for spin alignment of π radicals; see: a) H. Segawa, D. Machida, Y. Senshu, J. Nakazaki, K. Hirakawa, F. Wu, *Chem. Commun.* 2002, 3032; b) H. Segawa, Y. Senshu, J. Nakazaki, K. Susumu, *J. Am. Chem. Soc.* 2004, *126*, 1354.
- [4] a) A. Osuka, H. Shimidzu, Angew. Chem. 1997, 109, 93; Angew. Chem. Int. Ed. Engl. 1997, 36, 135; b) T. Ogawa, Y. Nishimoto, N. Yoshida, N. Ono, A. Osuka, Angew. Chem. 1999, 111, 140; Angew. Chem. Int. Ed. 1999, 38, 176; c) A. Tsuda, A. Nakano, H. Furuta, H. Yamochi, A. Osuka, Angew. Chem. 2000, 112, 572; Angew. Chem. Int. Ed. 2000, 39, 558; d) A. Tsuda, H. Furuta, A. Osuka, Angew. Chem. 2000, 112, 2649; Angew. Chem. Int. Ed. 2000, 39, 2549; e) A. Tsuda, H. Furuta, A. Osuka, Science 2001, 123, 10304; f) A. Tsuda, A. Osuka, Science 2001, 293, 79.
- [5] The center-to-center distances were estimated from the X-ray crystal structures of the related diporphyrins given in reference [4e].
- [6] G. N. La Mar, F. A. Walker in *The Porphyrins, Vol. IVB* (Ed.: D. Dolphin), Academic Press, New York, **1979**, p. 57.
- [7] H. Hata, H. Shinokubo, A. Osuka, J. Am. Chem. Soc. 2005, 127, 8264.
- [8] A. Bencini, D. Gatteschi, EPR of Exchange Coupled Systems, Springer, Berlin, 1989.
- [9] G. M. Godziela, H. M. Goff, J. Am. Chem. Soc. 1986, 108, 2237.
- [10] R. E. Coffman, G. R. Buettner, J. Phys. Chem. 1979, 83, 2387.