Total synthesis of 6-epi-sarsolilide A

Jiazhong Zhang and Xingxiang Xu*
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

Received 30 September 1999; accepted 10 November 1999

Abstract

This paper describes an asymmetric synthesis of 6-epi-sarsolilide A. The 11-membered carbocycle and sevenmembered lactone were established by an intramolecular HWE reaction and iodolactonization. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: sarsolilide A; intramolecular HWE reaction; total synthesis.

Sarsolilide A 1^{1} has been isolated from the marine Sarcophyton solidun Tixier-Durivault (Alcyoniidae). Due to the scarcity of the natural material, its absolute stereochemistry and biological activity are not known. The unique structure of sarsolilide A make it of synthetic interest.

Sarsolilide A1

2

3

In a preliminary report ${ }^{2}$ we have described the synthesis of compound 2 containing three of the necessary chiral centers. However, experiments showed that it was very troublesome to convert 2 into the required precursor $\mathbf{3}$ for macrocyclization because of the presence of the $\mathrm{C} 6-\mathrm{OH}$. So we changed our plan and attempted to firstly establish the 11-membered carbocycle from compound 7, and then construct the last chiral center by iodolactonization. However, the results revealed that the chiral center created by iodolactonization was different from sarsolilide A 1, as communicated herein. The synthetic route is shown in Scheme 1.

The synthesis commenced with compound 4. ${ }^{2}$ Selective desilylation ${ }^{3}$ and then protection of the two hydroxyl groups gave carbonate 5^{4} in 86% yield. Cleavage of the TBDPS ether followed by iodination produced iodide 6 in 92% yield. The compound 6 was treated with three phosphonate reagents ${ }^{5}$ and then hydrolysis ${ }^{6}$ of the acetal with Amberlyst-15 afforded the corresponding precursors for intramolecular HWE reaction, that is $\mathbf{7 , 8}$ and $\mathbf{9}$ in $73 \%, 64 \%$ and 60% yield, respectively (two steps).

[^0]

6

7 R=Me 8 R=Ph $9 \mathrm{R}=\mathrm{CH}_{2} \mathrm{CF}_{3}$

12

Scheme 1. Reagents and conditions: (a) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$, rt, overnight; (b) triphosgene, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \rightarrow 0^{\circ} \mathrm{C}$; (c) $\mathrm{Bu}_{4} \mathrm{NF}$, THF, rt, 1 h ; (d) I_{2}, $\mathrm{Ph}_{3} \mathrm{P}$, imidazole, THF: $\mathrm{CH}_{3} \mathrm{CN}(3: 1)$, rt; (e) (i) (RO) ${ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{COOMe}, \mathrm{NaH}, \mathrm{DMSO}$, rt, 30 min ; (ii), 6, DMSO, $50^{\circ} \mathrm{C}$, 4 h ; (f) Amberlyst-15, acetone- $\mathrm{H}_{2} \mathrm{O}, \mathrm{rt}, 2 \mathrm{~h}$; (g) NaH , DME, rt, 20 h ; (h) NaOH , THF- $\mathrm{H}_{2} \mathrm{O}$, reflux, overnight; (i) $\mathrm{I}_{2}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{rt}, 1 \mathrm{~h}$; (j) $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, benzene, reflux, 30 min ; (k) Dess-Martin oxid., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 30$ min ; (l) $\mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{Zn}, \mathrm{TiCl}_{4}, \mathrm{THF}$, rt, 30 min

In our efforts at macrocyclization, exposure of the phosphono ester aldehyde 7 to NaH in DME at room temperature provided a mixture of cyclized products enriched in the undesired E-olefin in a 50% total yield ($2: 1$ ratio of $E: Z$). ${ }^{7}$ Examining the phenyl phosphonate aldehyde $\mathbf{8}^{8}$ in the macrocyclization, showed that this reaction exhibited a surprising trend, and provided a mixture of product enriched in the desired Z-olefin in a 30% total yield ($3: 8$ ratio of $E: Z$). We also had the occasion to examine the trifluoromethyl phosphonate aldehyde 9 ; a variety of conditions for the cyclization of 9 were tried, but the results were disappointing and almost no product was obtained.

Subsequently, hydrolysis of the methyl ester of compound $\mathbf{1 0}$ was accompanied by the deprotection of the carbonate and iodolactonization was in situ performed. On treatment with a large excess of iodine at room temperature ${ }^{9}$ for prolonged periods, lactone $\mathbf{1 2}$ was obtained in only 30% overall yield (two steps). ${ }^{10}$ The most efficient iodolactonization condition was $\mathrm{I}_{2}-\mathrm{CH}_{3} \mathrm{CN}$, resulting in reaction completed in 1 h , to give $\mathbf{1 2}$ in 32% yield. Reduction of the iodide $\mathbf{1 2}$ with tributyltin hydride and oxidation of the resulting alcohol by Dess-Martin reagent gave compound $\mathbf{1 3}$ in 45% yield (two steps).

Finally, methylenation of ketone $\mathbf{1 3}$ by the mild $\mathrm{CH}_{2} \mathrm{I}_{2}-\mathrm{Zn}-\mathrm{TiCl}_{4}$ system ${ }^{11}$ yielded the target $\mathbf{1 4}$. However, it was notable that there was a remarkable difference on comparison of the ${ }^{1} \mathrm{H}$ NMR of compound 14 with that of sarsolilide A 1^{12} in the chemical shifts of $\mathrm{C} 11-\mathrm{H}$ and $\mathrm{C} 6-\mathrm{CH}_{3}$ (compound 14: $\mathrm{C} 11-\mathrm{H}, \delta 3.63 ; \mathrm{C}^{2}-\mathrm{CH}_{3}, \delta 1.52$; sarsolilide $\left.\mathrm{A} 1: \mathrm{C} 11-\mathrm{H}, \delta 3.01 ; \mathrm{C}^{-}-\mathrm{CH}_{3}, \delta 1.40\right)$. Consequently, it appears that the final chiral center created at the C6-position is different from sarsolilide A 1.

To confirm the assignment of the C6-configuration, the iodide $\mathbf{1 2}$ was studied by ${ }^{1} \mathrm{H}$ NMR, TOCOSY, DQCOSY and NOESY spectra. The C5 proton position was identified through the correlation of the C3-C4-C5 protons in the TOCOSY and DQCOSY spectra. The observed intense correlation between $\mathrm{C} 5-\mathrm{H}$ and $\mathrm{C} 11-\mathrm{H}$ in the NOESY experiment indicated that the configuration of C 6 was different from that in the natural product.

In summary, we have achieved the first enantioselective synthesis of 6-epi-sarsolilide A.

Acknowledgements

We are grateful to the Academy of Sciences and the National Natural Science Foundation of China for their financial support (Grant No. 29732061).

References

1. Zhang, M.; Long, K. H.; Huang, S. H.; Shi, K. L.; Thomas, C. W. J. Nat. Prod. 1992, 55, 1672-1675.
2. Zhang, J.; Xu, X. Tetrahedron Lett. 1998, 39, 6525-6528.
3. Erik F. J. de Vries; Brussee, J.; Arne Van der Gen J. Org. Chem. 1994, 59, 7133-7137.
4. Burk, R. M.; Roof, M. B. Tetrahedron Lett. 1993, 34, 395-398.
5. Marshall, J. A.; DeHoff, B. S. J. Am. Chem. Soc. 1986, 27, 4873-4876.
6. Mandal, A. K.; Shrotri, P. Y.; Ghogare, A. D. Synthesis 1986, 221-222.
7. The E - and Z-isomers of the ester-substituted double bond could be separated by column chromatography ($3: 1$ petroleum:ethyl acetate), their configurations were readily identified by the chemical shifts of the characteristic vinylic hydrogen in ${ }^{1} \mathrm{H}$ NMR (E-olefin: $\delta 6.93$ for $\mathrm{C} 3-\mathrm{H}$; Z-olefin $\delta 5.79$ for $\mathrm{C} 3-\mathrm{H}$). Selected data for the Z-isomer $\mathbf{1 0}$: $[\alpha]_{\mathrm{D}}{ }^{15}=+217.9\left(c 0.53, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz})$, $5.19(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.48(\mathrm{t}, 1 \mathrm{H}, J=3.1 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.00-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{dd}, 1 \mathrm{H}, J=2.6$, $9.6 \mathrm{~Hz}), 2.48-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.09(\mathrm{~m}, 7 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.03(\mathrm{~d}, 3 \mathrm{H}$, $J=6.8 \mathrm{~Hz})$. Selected data for the E-isomer: $[\alpha]_{\mathrm{D}}{ }^{15}=+174.4\left(c 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.93(\mathrm{dd}, 1 \mathrm{H}$, $J=6.7,9.1 \mathrm{~Hz}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.56-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{dd}, 1 \mathrm{H}, J=2.6$, $10.2 \mathrm{~Hz}), 2,72-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.38-2.18(\mathrm{~m}, 5 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.01(\mathrm{~d}$, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}$).
8. Ando, K. J. Org. Chem. 1998, 62, 1934-1939.
9. Chamberlin, A. R.; Dezube, M.; Dussault, P.; McMills, M. C. J. Am. Chem. Soc. 1983, 105, 5819-5825.
10. Selected data for 12: $[\alpha]_{\mathrm{D}}{ }^{20}=+32.0\left(c 0.19, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.34(\mathrm{dd}, 1 \mathrm{H}, J=5.4,9.0 \mathrm{~Hz}), 5.44(\mathrm{~d}$, $1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 4.05(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}), 4.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.40(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}), 3.17(\mathrm{dd}, 1 \mathrm{H}, J=5.1,10.2 \mathrm{~Hz}), 2.93$ $(\mathrm{dd}, 1 \mathrm{H}, J=5.4,13.8 \mathrm{~Hz}), 2.83(\mathrm{dd}, 1 \mathrm{H}, J=5.4,13.2 \mathrm{~Hz}), 2.70(\mathrm{~s}, 1 \mathrm{H}), 2.34-2.16(\mathrm{~m}, 6 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.90(\mathrm{dt}, 1 \mathrm{H}$, $J=2.4,11.2 \mathrm{~Hz}), 1.69-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.05(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$.
11. (a) Hibino, J.; Okazoe, T.; Takai, K.; Nozaki, H. Tetrahedron Lett. 1985, 45, 5579-5580; (b) Lombardo, L. Tetrahedron Lett. 1982, 23, 4293-4296.
12. Selected data for $14:{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.32(\mathrm{dd}, 1 \mathrm{H}, J=9.0,6.0 \mathrm{~Hz}), 5.16(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 4.94(\mathrm{~s}, 1 \mathrm{H})$, $4.63(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{dd}, 1 \mathrm{H}, J=2.4,10.2 \mathrm{~Hz}), 2.82(\mathrm{dt}, 1 \mathrm{H}, J=3.6,13.6 \mathrm{~Hz}), 2.66-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.15$ $(\mathrm{m}, 5 \mathrm{H}), 1.99(\mathrm{dd}, 1 \mathrm{H}, J=5.1,13.2 \mathrm{~Hz}), 1.78(\mathrm{ddd}, 1 \mathrm{H}, J=2.4,8.4,13.2 \mathrm{~Hz}), 1.67$ (ddd, $1 \mathrm{H}, J=9.3,11.1,13.2 \mathrm{~Hz}), 1.52$ (s, $3 \mathrm{H}), 1.07(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.05(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$; HRMS found 316.2043 ; calcd: 316.2039. Selected data for sarsolilide A 1: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.29(\mathrm{dd}, 1 \mathrm{H}, J=9.0,6.0 \mathrm{~Hz}), 5.18(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 4.89(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 4.64(\mathrm{~d}$, $1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 3.01(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 2.91(\mathrm{~m} \mathrm{1H}), 2.63-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.07$ $(\mathrm{m}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.04(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$.

[^0]: * Corresponding author. E-mail: xuxx@pub.sioc.ac.cn (X. Xu)

 0040-4039/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.
 PII: S0040-4039(99)02126-7

