Highly Diastereoselective Additions of Organometallic Reagents to 1-O-Silylated 3,4-Di-O-Benzyl-L-Erythrulose Derivatives

Miguel Carda,^a Florenci González,^a Santiago Rodríguez^a and J. Alberto Marco^{b, *}

Departamento de Ciencias Experimentales, Universitat Jaume I, E-12080 Castellón, Spain, and Departamento de Química Orgánica, Facultad de Químicas, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain.

(Received in UK 24 June 1993)

Abstract: The diastereoselectivity of the addition of several organometallic reagents to the carbonyl group of the title compounds has been investigated. Some organomagnesium reagents display high diastereoselectivities (90-99%) and the major products are those predicted by the α -chelation model.

Protected erythrulose derivatives of general formula 1 may be very useful for the synthesis of chiral natural products. We have recently shown¹ that various organometallic reagents of general formula MeML_n (ML_n = metal + ligands) undergo diastereoselective addition to the carbonyl group of protected erythrulose acetonides 1 (R^1 , R^2 = CMe₂, R^3 = silyl group). Tertiary alcohols 2 (R^4 = Me) were obtained with diastereomeric excesses (de's) ranging from 0 to ca. 80%. With the aim of improving the diastereoselectivity of the process, we have investigated the effect of the replacement of the acetonide moiety by two more strongly chelating O-benzyl groups.² In fact, the

reaction of several organometallic reagents with L-erythrulose derivative $3^{3,4}$ yielded two diastereomeric adducts, 4 and 5. Product ratio was dependent on the reaction conditions (Table 1), very high de's (>90 %) being observed with some organomagnesium reagents. The *t*-butyl-diphenylsilyl group was selected for the protection of the primary alcohol group, as it gave better de's than the *t*-butyldimethylsilyl or the triisopropylsilyl group.^{1,5,6}

M. CARDA et al.

Entry	Reagent RM	Solvent	T / t ^a	Yield (%)	Ratio 4/5 ^b
1	MeLi	Et ₂ O	-78/1	86	26:74
2	MeLi/12-crown-4	Et ₂ O	-78/1	70	34:66
3	MeLi/ZnCl ₂	Et ₂ O	0/1	_°	_
4	MeLi/LiClO ₄	Et ₂ O	-78/1	94	50:50
5	MeLi/Me ₃ SiCl	Et ₂ O	-78/1	86	27:73
6	MeLi/TiCl ₄	Et ₂ O	0/1	69	81:19
7	MeLi/BF ₃ .Et ₂ O	Et ₂ O	-78/1	73	40:60
8	MeTi(OiPr) ₃	neat	25/48	48	81:19
9	AlMe ₃	C ₆ H ₆	25/2	94	50:50
10	MeMgCl	Et ₂ O	-78/1	89	> 99: 1 ^{b,d}
11	MeMgBr	Et ₂ O	-78/1	95	>99:1 ^{b,d}
1 2	MeMgBr	THF	-78/1	87	>99;1 ^{b,d}
1 3	MeMgBr/BF ₃ .Et ₂ O	Et ₂ O	-78/1	75	>99:1 ^{b,d}
14	EtMgBr	Et ₂ O	-78/1	98	88:12
15	EtMgBr	Et ₂ O	0/1	93	89:11
16	EtMgBr	THF	-78/1	94	97:3
17	EtMgBr	THF	0/1	92	97:3
18	$CH_2 = CHMgBr$	Et ₂ O	-78/1	87	98:2 ^{b,d}
19	$CH_2 = CHMgBr$	Et ₂ O	0/1	84	96:4
20	$CH_2 = CHMgBr$	THF	-78/1	90	98:2 ^{b,d}
21	$CH_2 = CHMgBr$	THF	0/1	91	96:4
22	CH≡CMgBr	Et ₂ O	0/1	80	93:7 (94:6) ^e
23	CH=CMgBr	THF	0/1	93	86:14
24	$CH_2 = CHCH_2MgBr$	Et ₂ O	-78/1	86	67:33 ^t
25	$CH_2 = CHCH_2MgBr$	Et ₂ O	0/1	87	50:50 ^r
26	$CH_2 = CHCH_2MgBr$	THF	-78 /1	85	34:66 ^t
27	$CH_2 = CHCH_2MgBr$	THF	0/1	82	40:60 ^f

Table 1. Diastereoselectivity in nucleophilic additions to 3.

^aTemp. (°C) / time (hours). In entries 6, 8, 9, 22 and 23, the reaction was too slow at temperatures significantly lower than the indicated one. ^bDetermined by ¹H and ¹³C NMR. ^cNo reaction. ^dConfirmed by GC. ^cDetermined by GC. ^fThe configurations of the products were not determined.

The absolute configurations of the obtained products were assigned chemically as depicted in Schemes 1 and 2. Compound 4 (R = Me) was transformed via 6 into perbenzylated tetraol 7, identical with the product obtained from the previously described 8^1 (Scheme 1). Furthermore, compound 4 (R = Et) was transformed into tertiary alcohol 13 (Scheme 2), which was different of its diastereomer 10, obtained from 6 as depicted. Finally, both 14 and 15 were hydrogenated to the same compound 11, an intermediate in the sequence $4 \rightarrow 13$. The configuration of the reaction products with allylmagnesium bromide, which showed a poor diastereoselectivity (entries 24-27), was not established.

Scheme 1

a: TBAF (1 eq)/THF, r.t., 15 min. b: BnBr (4 eq), HNa (4 eq), cat. am. nBu4NI, DME, 90 °C, 4 h.

a: TsCl (1.4 eq), Et₃N (1.8 eq), DMAP (cat.), CH₂Cl₂, r.t., 18 h. b: K₂CO₃ (2 eq), MeOH, r.t., 1 h. c: Me₂CuLi (5 eq), Et₂O, -30 °C, 2 h. d: TBAF (1 eq)/THF, r.t., 15 min. e: LiAIH₄ (4 eq), Et₂O, r.t., 5 h. f: H₂, 5% Pd/C, EtOAc, r.t., 3 h.

The results presented in Table 1 display a marked contrast with those observed by us with erythrulose acetonides.¹ In the present case, the additions of several organomagnesium reagents turn out to be highly diastereoselective (entries 10-23), with the major product being that expected from Cram's α -chelation model.⁷ The reactions with MeLi showed here the opposite diastereofacial preference but de's were not satisfactory. Entry 1 represents the highest proportion obtained of diastereomer 5, which corresponds to either the non-chelation Felkin-Anh model or to β and/or α/β -chelation mechanisms.⁶⁻⁸ Attempts at improving the diastereoselectivity by addition of certain reagents led to erratic effects (entries 1-7). It is noteworthy that addition of 12-crown-4 with the aim of preventing chelation via sequestering of Li⁺, did not cause any relevant change in the diastereoselectivity. Reaction with AlMe₃ gave an excellent yield but was nonstereoselective (entry 9). On the other hand, MeTi(OiPr)₃ furnished mainly the product expected from α -chelation (entry 8), in line with other reports⁹ but also in contrast to previous findings of ours¹ and others.² The low diastereoselectivity of the reactions with allylmagnesium bromide may be due to the occurrence of a metallo-Claisen-type mechanism, which does not involve chelation.²

Solvent and temperature effects have also been studied in the case of the more diastereoselective Grignard reagents. The latter factor seemingly plays a minor role in these cases, as no essential differences were noted between reactions conducted at 0 and -78 $^{\circ}$ C (see also

footnote a in Table 1). On the other hand, MeMgBr and $CH_2 = CHMgBr$ proved almost insensitive to the nature of the solvent whereas EtMgBr and HC = CMgBr were somewhat more diastereoselective in THF and Et₂O, respectively. These facts most likely reflect differences in the aggregation states⁷ of the Grignard reagents but it is not easy to draw mechanistic conclusions of general value.

Very recently, Nagano *et al* have reported on the reaction of 1-O-benzoyl- and 1-O-trityl-L-erythrulose acetonide with various organolithium and organomagnesium derivatives.¹⁰ While the former (MeLi, BuLi) showed poor diastereoselectivities, Grignard reagents gave high de's in some cases. A marked dependence on reagent structure, solvent and temperature was also observed. Most notably, methylmagnesium derivatives were the least diastereoselective among the assayed reagents. However, although the authors tried to explain their results within the classical frame of chelation vs. Felkin-Anh models,^{2,6-8} no general trends with predictive value were established.

All the results above as well as their application to the synthesis of some natural products will be reported in full in due course.¹¹

Acknowledgements - The authors thank the DGICYT (Spanish Ministry of Education and Science) for financial support (project PB89-0523). They also thank Prof. H. Nagano for providing information prior to publication.

LITERATURE

- 1. Carda, M., González, F., Rodríguez, S., Marco, J.A., Tetrahedron: Asymmetry 1992, 3, 1511.
- 2. Mead, K., Macdonald, T.L., J.Org. Chem. 1985, 50, 422.
- 3. Obtained from L-ascorbic acid by transformation into 1,2-O-isopropylidene-L-threitol⁴ followed by O-benzylation, acetonide cleavage, selective silylation of the primary alcohol (TBDPSCI) and Swern oxidation. Experimental details will be published in a full paper.
- 4. Abushanab, E., Bessodes, M., Antonakis, K., Tetrahedron Lett. 1984, 3841.
- 5. The use of the t-butyldimethylsilyl group led to decreased diastereoselectivity in the reactions with either MeLi (30:70) or MeMgBr (92:8) (see ref. 6). The de's were not significantly improved with the use of the trüsopropylsilyl group.
- 6. Chen, X., Hortelano, E.R., Eliel, E.L., Frye, S.V., J.Am. Chem. Soc. 1992, 114, 1778.
- 7. Reetz, M.T., Angen/Chem. 1984, 96, 542; Angew.Chem.Int.Ed.Engl. 1984, 23, 556.
- 8. Anh, N.T., Top. Curt Chem. 1980, 88, 145.
- 9. Reetz, M.T., Hüllmann, M., J.Chem.Soc.Chem.Commun. 1986, 1600.
- 10. Nagano, H., Ohno, M., Miyamae, Y., Kuno, Y., Bull. Chem. Soc. Jpn. 1992, 65, 2814.
- 11. All new compounds gave satisfactory microanalytical (C,H, ±0.4%) and spectral data. Some optical rotation values in CHCl₃ = 23 °C are:

6:	Oil, $[\mu]_{D} = +23.6$ (c, 7.2).	7: Oil, $[\alpha]_{D} = +5.3$ (c, 0).75).
9:	Oil, $[\mu]_{D} = +2.2$ (c, 3.6).	10 : Oil, $[\alpha]_{\rm D} = +20.7$ (c,	3.5).
11:	Oil, $[x]_{D} = +17.2$ (c, 8.2).	12: Oil, $[\alpha]_{D} = -8.1$ (c, 6	i) .
13:	$\operatorname{Oil}_{1}^{\dagger} [\alpha]_{D} = +9.5$ (c, 3.7).	14: Oil, $[\alpha]_{D} = -4.5$ (c, 4	H).
15:	Oil, $[\alpha]_{D} = +10.9$ (c, 3.8).		