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Hydrogenase enzymes catalyze both the "uptake" and for- 
mation of hydrogen by microbes.' Recent focus on the role of 
nickel sites in such enzymes has included the speculation that 
both metal hydrides2 and metal dihydrogen complexes3 are 
intermediates in the activation of H2 by these systems. Despite 
controversy with respect to the exact structure and function of 
the nickel site: a key metabolic role of hydrogenase enzymes is 
the transfer of reducing equivalents from H2 to biologically active 
redox cofactors such as NAD+. We report herein the first direct 
catalytic reduction of an NAD+ model compound with H2 at 
ambient pressure and temperature and demonstrate, via isolated 
stoichiometric reactions, each of the proposed steps of catalysis: 
hydride transfer, hydrogen coordination, and hydrogen activation 
(Scheme 1). This catalysis provides the first well-characterized 
reactivity model illustrating the cooperative roles of a molecular 
hydrogen complex and a transition-metal hydride as a functional 
model of hydrogenase  enzyme^.^ 

As indicated in Scheme 1, we associate three primary 
reactions: (I) hydride transfer, (11) H2 coordination, and (111) 
Hz deprotonation with three processes that are catalyzed by 
hydrogenases: (i) the transfer of reducing equivalents to relevant 
redox cofactors, (ii) the consumption and/or formation of H2, 
and (iii) the exchange of hydrogen isotopes between dihydrogen 
and water. We have found that Cp*(dppm)RuH (1, Cp* = 
C5(CH3)5; dppm = Ph2PCH2PPh2) and its related H2 complex 
[Cp*(dppm)Ru(H2)]+ (2)6 arecompetent in allofthese functions. 

A hydride transfer is required to reduce NAD+ to NADH. 
Detailed model studies of hydride transfer from dihydropyridines 
to pyridinium salts have been reported? but little is known about 
the reaction of metal hydrides with these important ~ubstrates.~ 
We have observed the quantitative and regioselective reactions 
of 1 with NAD+ models such as 3-cyano-N-methylquinolinium 
([MQCN]+, eq 1) 'O and N-methylacridinium ([MA]+, eq 2) salts 
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R* 

yielding MQCNH and MAH, respectively, and [Cp*(dppm)- 
Ru(S)][PF6] (S = CH3CN (3a) eq 1; THF (3b)).11 

As a hydride abstraction reagent, [MA]PF6 is a convenient 
alternative to the trityl cation12 (it is inexpensive, easy to prepare, 
and may be stored in air at room temperature for long periods). 
When the reaction of [MA]PF6 or the trityl cation with 1 is 
carried out in THF under Nz, a new Ru(II)-Nz complex (4) can 
be isolated (eq 2).13J4 Under an atmosphere of Ar, hydride 
abstraction yields a labile THF complex (3b). 

To test the nature of the hydride transfer in reaction 2, the 
reduction of [MA]PF6 with 1 was carried out in the presence of 
an electron-transfer inhibitor, [MV] [PF6]2 (MV = methyl 
viologen). Despite a one-electron reduction potential that is lower 
than that of [MA]+ (EO(MVZ+/MV+, CH3CN) = -178 mVl6 
and Eo(MA+/MA', CH3CN) = -224 mVL7 vs NHE), a 5-fold 
excess of [MV]2+ has no effect on the course of [MA]PF6 
reduction. In addition, the products formed by reaction of 1 with 
[MA]PF6 do not change as the relative ratio of [MA]PF6:1 is 
varied. With either an excess of substrate ([MA]PF6:1 >> 1.0) 
or an excess of metal hydride ([MA]PF6:1 < l.O), the products 
are always MAH and 3. In contrast, when trityl cation is the 
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In addition, to be efficient at low partial pressures of hydrogen, 
the relative binding affinity of the metal must favor hydrogen 
over water. Water displaces coordinated THF in 3b, forming a 
labile aquo complex (3c),llc and H2 readily converts 3c to 2. The 
relative affinity demonstrated by [Cp*(dppm)Ru]+ for a list of 
key ligands is thus: CO > CH3CN > H2 > H20 > N2 > THF. 
The preference for CO over H Z , ~  H2 over H20,25 and H20 over 
N2 mimics the relative affinity of hydrogenase enzymes for these 
important small molecules. 

The acidity of 26b is also important in selecting tetrameth- 
ylpiperidine (TMP) as a noncoordinating base to deprotonate 
2/2'(q5). Thisreaction,along with2and3,providesacatalytic 
cycle as proposed in Scheme 1 and predicts thereduction of hydride 
amptors with H2 catalyzed by "[Cp*(dppm)Ru]+". 

N2 
TMP + 2/2' - [HTMP]' + 1 ( 5 )  

23 OC, THF 

Catalytic reduction of [MA]PF6, as well as [PhaCIBF, and 
[Fc]PF6, with HZ is observed in the presence of 1,2, or 4. This 
is the first catalyzed reduction of NAD+ model compounds with 
HZ in high yield ([ 11 < 0.1 mol 6) at ambient temperature and 
pressure,26 A weakly-coordinating counterion and solvent are 
required as reduction is poisoned by halide, which forms Cp*- 
(dppm)RuX, or acetonitrile, which blocks coordination of H2. 
Simple transfer 'of deuterium from D2 to C-9 of [MA]+ yields the 
monodeuterated product, MAD, without isotopescrambling. The 
13C NMR is isolated MAD (1:l:l triplet for C-9 at 6 33-31) 
reveals only a trace of MAH (Figure 1). 

We conclude that reduction of pyridinium salts by Cp*(dppm)- 
RuH are single-step processes and that the catalytic reduction 
of theseNAD+modelcompoundswith H2,at ambient temperature 
and pressure, is possible with this relatively "hydridic" metal 
hydride. This catalysis rquires a delicate balance of M-H 
reactivity between a preference for protonation (basicity) and 
reaction with other electrophiles ("hydridicity"). When a proper 
balance is struck, hydridic metal hydrides may be generated under 
mild conditions via the coordination and deprotonation of 
dihydrogen. The reversible deprotonation of such a hydrogen 
complex yields a pH-sensitive active site capable of both isotope 
exchange catalysis and redox cofactor reduction via hydride 
transfer. This reactivity bears a striking resemblance to that of 
hydrogenase enzymes. Although in hydrogenase systems hy- 
drogen uptake is coupled to reductase activity by a seria of electron 
and proton transfers, "net hydride transfer" is constrained by the 
same thermodynamics in all pathways ( q  6). The efficiency of 
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Figure 1. (a) Deuteration of [MA]PF6 Catalyzed by 1 and 13C NMR 
(CD3CN) spectra with gated decoupling of C-9 in (b) MAH (6 C-9 
33.65, N-CHI 33.80) vs (c) (9-2H)-9,1O-dihydro-lO-methylacridinc, 
MAD (6 C-9 33.31, N-CH, 33.80). 

substrate, net hydride transfer yields tritane and 3 under catalytic 
conditions ([Ph,C]BF4:1 >> 1) but also trityl dimer and new 
ruthenium products (including 2 and a dimeric Ru hydride) when 
excess metal hydride is present ([PhoC]BF4:1< 1.0). Thus, our 
evidence supports a single-step hydride transfer from 1 to 
pyridinium salts and a multistep process for trityl cation, which 
is a much stronger one-electron oxidant (Eo(Ph~C+/Ph3C', 
DMSO) = +280 mV).18 The mode of hydride transfer from 1 
is substrate dependent. 

The N2 in 4 is readily displaced by Hz, yielding the 2/2' 
dihydrogen/dihydride complex equilibrium ( q  3).19 Although 

this reaction is irreversible at ambient pressure, the lability of H2 
in2/2'at 23 OCisrevealed byitsexchangewithD2andsubstitution 
by CO, yielding [Cp*(dppm)Ru(CO)]+ (5, vco = 1977 cm-1). 

Hydrogenases not only bind Hz with facility, they also activate 
the H-H bond via a reversible cleavage (deprotonation), as shown 
by catalysis of isotope exchange between D2 and HzO (eq 4)." 

2(lmo1%) 

23 OC, THF 
D,+H,O-HD+H2+HD0 (4) 

Recent examplesIz1 anticipated by Heinekey's discovery of highly 
acidic Hz complexes,22 support the speculation that such inter- 
mediates are formed at the Hz-activating site of hydrogenases.3 
We have observed isotope exchange between Dz and water at 
ambient conditions catalyzed by 2-29 Both labile hydrogen 
dissociation from 2 and significant acidity are required for it to 
serve as an active catalyst for this reaction. 
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energy transduction from Hz to redox cofactors, in natural and 
synthetic systems, is limited by the barriers to hydride transfer. 

We are currently extending these studies to the development 
of cofactor-mediated hydrogenation catalysis. 
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