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Facile Syntheses of Cyclophellitol and its (1 R,6S)-, (1 R,2S,6S)-, (2s)-Diastereoisomers 
from (-)-Quinic acid 
Tony K. M. Shing* and Vincent W.-F. Tai 
Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong 

Cyclophellitol and its (1 R,6S)-, (1 R,2S,6S)-, (2s)-diastereoisomers are constructed from quinic acid involving a 
regioselective cyclic sulfate ring opening reaction, a regiospecific oxidative elimination, and an epoxidation reaction. 

Cyclop helli t ol { ( 1s ,2R ,3S ,4R, 5R ,6R) -5-hydroxyme th y l-7- 
oxabicyclo[4.1 .O.]heptane-2,3,4-triol) 1, isolated from the 
culture filtrates of mushroom Phellinus s p . ,  has been shown to 
be a potent inhibitor of P-D-ghcosidase.l Interests in cyclo- 
phellitol have yielded three syntheses starting from L-glu- 
cose,*,3 from ~-quebrachitol4 and from a Diels-Alder adduct.5 
The structure of cyclophellitol 1 corresponds to a pseudo-P-D- 
glucopyranose whereas its (lR,bS)-diastereoisomer 2, t  a 

i It is inappropriate to name this compound as 1,6-epi-cyclophellito1 
because epi implies difference in configuration at only one atom. 

pseudo-a-D-glucopyranose, has been synthesised from D-gal- 
actose and demonstrated to be a specific a-D-glucosidase 
inhibitor.3 Along the same vein of reasoning, (1R,2S,6S)- and 
(2s)-diastereoisomers of cyclophellitol, i. e. 3 and 4 (pseudo-a- 
and -6-D-mannopyranose), would be expected to be an a- and 
a P-D-mannosidase inhibitor, respectively. Indeed, 3 has 
recently been constructed from D-galactose and displayed 
a-D-mannosidase inhibitory activity.6 As part of our pro- 
gramme on the use of quinic acid as a homochiral precursor in 
organic synthesis, we have already described enantiospecific 
syntheses of 2-cro ton yloxyme t hyl- (4R ,5R ,6R) -4,5,6- trihy- 
droxycyclohex-2-enone (COTC) ,7 pseudo-P-D-mannopyran- 
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The route to cyclophellitol 1 and its (lR,6S)-diastereo- 
isomer 2 is illustrated in Scheme 1. Our previous work has 
indicated that quinic acid 5 can be converted readily into the 
alcohol 6 in six stages with an overall yield of 41.6%.9 
Blocking the free alcohol in 6 as the benzyl ether 7 followed by 
acid hydrolysis afforded the diol8, m.p. 110-112 "C; [&ID2' + 
26.3 (c 1.2, CHC13).$ According to the Sharpless protoco1,lO 
the diol8 was transformed smoothly into the cyclic sulfate 9, 
m.p. 106-108 "C; [a]D20 + 27.8 (c 0.9, CHC13). Regioselective 
opening of the cyclic sulfate 9 with selenide anion followed by 
acid hydrolysis formed the trans-diaxial seleno-alcohol 10 as 
the sole product. Oxidative elimination of 10 via the selenox- 
ide occurred regiospecifically 11 away from the hydroxy group, 
leading to the allylic alcohol 11 as a colourless oil, [a]D2' + 
54.3 (c 1.3, CHC13). The configuration of the alcohol in 11 was 
inverted via the Mitsunobu reaction12 to the @-benzoate 12, 
m.p. 54.5-55.5"c; [a]D2' + 216 (c 1.2, CHC13). Epoxidation 
of the alkene in 12 with rn-chloroperbenzoic acid (MCPBA) 
gave a mixture of inseparable oxiranes 13 which upon 
debenzoylation provided, after chromatography, the alcohols 
14, m.p. 76.5-78.5"C; [aID23 + 111 (c 0.4, CHC13) and 15, 
m.p. 112-113°C; [a]D2' + 86.4 (c 0.6, CHC13) in a ratio of 
1 : 2.7.9 Deprotection of 14 and 15 gave cyclophellitol 1, m.p. 
146-148 "C [lit.,I m.p. 149-151 "C]; [a]$3 + 100 (c 0.3, H20)  

[&ID + 103 (c 0.5, H20)) and its (lR,GS)-diastereo- 
isomer 2, m.p. 155-157°C [lit.,3 m.p. 150-152"C]; [aID23 + 
83.3 (c 0.3, H 2 O ) { l i ~ , ~  [a]D + 80 (c 0.4, H20)}.7 

The formation of (1R ,2S,6S)- and (2s)-diastereoisomers of 
cyclophellitol, 3 and 4, is shown in Scheme 2. Acetylation of 11 
afforded the acetate 16 in which the alkene moiety was 
epoxidised to give the readily separable oxiranes 17, m.p. 
59-61 "C; [ C Y ] D ~ ~  + 4.8 ( C  2.7, CHC13), and 18, [ a ] ~ ~ ~  + 14.3 ( C  

ose, pseudo-fl-D-fructopyranose,8 pseudo-a-D-glucopyranose 
and pseudo-a-D-mannopyranose .9 This communication 
demonstrates further the versatility of this approach in the 
facile syntheses of 1, 2, 3 and 4. 
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Scheme 1 Reagents and conditions: i, 6 steps (41.6%), see Ref. 9; ii, 
NaH, tetrahydrofuran, 0 "C then benzyl (Bn) bromide, Bun4NI (cat.), 
reflux, overnight (82%); iii, CF3COZH, CHZCl2, room temp., 24 h 
(90%); iv, triethylamine, thionyl chloride, CH2CI2, 0 "C, 5 min then 
Na1O4, RuC13, CC14, MeCN, H 2 0 ,  0°C-room temp., 1 h, (89%); v, 
diphenyl diselenide, sodium borohydride, EtOH, 0 "C then H2SO4, 
HzO, (80%); vi, MCPBA, CH2ClZ, -40°C then Pr$NEt, toluene, 
80 "C, (72%); vii, benzoic acid, triphenyl phosphine, diethylazodicar- 
boxylate, toluene, O'C, 30 min, (93%); viii, MCPBA, CH2C12, reflux, 
48 h, (66%); ix, potassium carbonate (cat.), MeOH, room temp., 
(95"/ ) ,  (14: 15 = 1 : 2.7); x, HZ, 5% PdC, EtOH, room temp., (for 1, 
98%; for 2, 100%). 
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Scheme 2 Reagents and conditions: i ,  (MeC0)20 (Ac20), pyridine, 
N,N-dimethylaminopyridine (cat.), CH2C12, room temp., 24 h (96%); 
ii, MCPBA, CH2C12, reflux, 42 h, (77%0, 17: 18 = 1: 1.2); iii, 
potassium carbonate (cat.), MeOH, room temp., 24 h; iv, H2, 5% 
PdC,  EtOH, room temp., (two steps, for 3, 86%; for 4, 81%). 

$ All new compounds gave satisfactory analytical and spectral data. 

0 Debenzoylation of 12 formed the corresponding allylic alcohol 
which was epoxidised to give 14 and 15 in a ratio of 5 : 95 [eqn. (l)]. 
Epoxidation of 11 gave 19 as the sole product [eqn. (2)]. 

. .. 
I, I1 

(1) 12 - 14 + 15 

/OBn 

11 - .' 0: K: (2) 

6 H  
Reagents and conditions: i ,  NaOMe (cat.), MeOH, room temp., 12 h, 
(94%); ii, MCPBA, CH2C12, room temp., 36 h, (for 14 and 15,70% ; 
for 19, 95%). 

7 l3C NMR data (62.5 MHz, DzO, dioxane was used as an internal 
reference at 6 67.4): for 1 , 6  44.3,56.8,56.9,61.4,67.8,71.7,77.1;  for 
2, 6 45.0, 55.8, 58.2, 61.3, 70.4, 72.1, 74.0; for 3, 6 45.3, 55.6, 56.6, 
61.6, 66.7, 68.0, 71.2; for 4, 6 44.8, 54.4, 56.9,61.8,66.4, 66.7, 73.2. 
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2.0, CHC13), in a ratio of 1 : 1.2.3 Deprotection of 17 and 18 
yielded 3, m.p. 129-131°C (lit.,6 oil]; [a]D23-39.5 (c 0.9, 
H,O){lit. ,6 [a]D25-76 (c 0.1, H20)) and 2-epi-cyclophellitol 

The present approach to cyclophellitols from quinic acid is 
flexible and versatile and thus opens routes for facile syntheses 
of not only other diastereoisomeric pseudo-anhydropyranoses 
but also their aziridine analogues. Research in this direction is 
in progress. 

We thank the Croucher Foundation for financial support. 

4, m.p. 148-150°C; [ (X]D~~  -I- 7.0 (C 0.4, H20).7 
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