AN EFFICIENT APPROACH TO STEREOSELECTIVE GLYCOSYLATION OF CERAMIDE DERIVATIVES: USE OF PIVALOYL GROUP AS A STEREOCONTROLLING AUXILIARY¹)

Susumu Sato, Shigeki Nunomura, Takahisa Nakano, Yukishige Ito, and Tomoya Ogawa* RIKEN (The Institute of Physical and Chemical Research) Wako-shi, Saitama, 351-01 Japan

Abstract: A remarkable effect of pivaloyl group as a stereocontrolling auxiliary at O-2a of glycosyl donors was demonstrated in order to improve the poor yield so far observed for the coupling between glycosyl donors and protected ceramides.

An oxocarbenium ion 1, derived from a glycosyl donor with O-2 acyl group, gives rise to a more stable dioxocarbenium ion 2^{2} , which upon reaction with an alcohol R'OH affords either a 1,2-trans glycoside 3 or an orthoester 4 (scheme 1).

During the course of our experiments³) directed toward total synthesis of glycosphingolipids, it was demonstrated that coupling between peracetylated glycosyl donors and ceramide derivatives (8 and 9) gave particularly poor yields if glycan chains contain more than three monosaccharide residues. For example, the reaction of glycosyl donors 5 and 13 with 8 gave only trace (less than 5%)⁴) and 13% yield⁵) of the desired 10 and 15, respectively. As the poor yields may result from the concomitant formation of an orthoester, use of pivaloyl instead of acetyl in 2 should disfavor⁶) the orthoester route (b) due to the presence of bulky t-butyl group next to the electrophilic carbon atom and eventually enhance the coupling efficiency along route (a).

To test this reasoning, glycotriaosyl donors 6^{7} , 7^{7}), and 14^{7}) that carry a stereocontrolling auxiliary at O-2a were prepared (vide infra). Crucial experiments were then performed. Trimethylsilyltriflate (TMSOTf) promoted glycosylation of 9 with imidates⁸) 6 and 14 did afford the desired 11^{7}) and 16^{7}) in 66 and 37% yield, respectively. Similarly, glycosylfluoride 7, a 5:1 mixture of β and α anomers, was employed under the standard condition⁹) (SnCl₂, AgOSO₂CF₃) for

the glycosylation of 9 to give 11 in 77% yield. Conventional deprotection of 11 (1. Bu_4NF in 1:1 THF-McOH, 2. NaOMe-MeOH, 71% overall) afforded lacto-N-triaosylceramide 12¹⁰). These results clearly revealed a remarkable stereocontrolling capability of pivaloyl auxiliary at O-2a in 6,7 and 14 which were prepared in a regiocontrolled way as follows.

The orthoester 17 readily obtainable from peracetylated lactosylbromide was alkylated into monoallyl derivative 18^{71} in 96% yield (1. Bu₂SnO in 1:1 toluene-THF¹¹), 2. CH₂=CHCH₂Br, Bu₄NBr in THF). Conversion of 18 into 19^{71} was achieved in 5 steps (1. BnBr, NaH in DMF, 2. TMSOTf¹²), 3. NaOMe-MeOH, 4. tBuCOCl, 5. PdCl₂-NaOAc-aq.AcOH¹³), 65% overall). CuBr₂-Bu₄NBr-AgOTf promoted glycosylation¹⁴) of 19 with thioglycoside 20 gave an 86% yield of 21⁷), which was then converted in 4 steps into 22⁷) as a 1:1 mixture of α and β anomers (1. NH₂NH₂•H₂O in EtOH, 2. Ac₂O-Py-DMAP, 3. Pd-C, H₂, 4. Ac₂O-Py-DMAP, 83% overall). Selective removal of O-1a acetyl group of 22 with NH₂NH₂•AcOH in DMF¹⁵) gave a quantitative yield of 23⁷), which was further treated either with Cl₃CCN-DBU in (ClCH₂)₂ to give an 83% yield of 6 or with DAST in THF-(ClCH₂)₂ to give a 73% yield of 7 as a 5:1 mixture of β and α anomers.

Globotriaosyl donor 14 was prepared as follows. Conversion of allyl glycoside 24 into orthoester 25⁷) was performed in 5 steps (1. PhCH(OMc)₂, TsOH, 2. Ac₂O-Py-DMAP, 3. PdCl₂-NaOA-

aq.AcOH, 4. CBr4-P(NMe₂)₃ in THF, 5. BnOH-Bu4NBr-Et₃N in CH₂Cl₂, 40% overall). 25 was further transformed into benzyl glycoside 26⁷) in 58% overall yield in 6 steps (1. NaOMe-MeOH, 2. BnBr-NaH in DMF, 3. TMSOTf in (ClCH₂)₂, 4. NaOMe-McOH, 5. tBuCOCl, 6. BH₃•NMe₃-AlCl₃ in THF¹⁶). AgOTf promoted glycosylation of 26 with chloride 27¹⁷) in (ClCH₂)₂ at -20° afforded a 78% yield of 28⁷) which was then converted into a 1:1 mixture of α and β anomers 29⁷) (1. Pd-C, H₂, 2. Ac₂O-Py-DMAP, 77% overall). Treatment of 29 as in the case of 23 finally gave the desired imidate 14 in 52% overall yield.

In conclusion, by employing pivaloyl group as a stereocontrolling auxiliary, efficiency of the glycosylation of ceramide derivatives became notably enhanced. Regioselective synthesis routes for the introduction of a pivaloyl auxiliary at O-2a were also established.

Acknowledgments. This work was partly supported by Special Coordination Funds of the Science and Technology Agency of the Japanese Government. We thank Dr. J. Uzawa and Mrs. T. Chijimatsu for recording and measuring the NMR spectra and Dr. H. Yamazaki and his staff for the elemental analyses. We also thank Ms. A. Takahashi and Ms. K. Moriwaki for their technical assistance.

Reference and Notes

- 1) Part 57 in the series "Synthetic Studies on Cell Surface Glycans". For part 56, see H. Iijima, M. Numata, M. Sugimoto, and T. Ogawa, submitted for publication.
- K. Igarashi, Adv. Carbohydr. Chem. Biochem., 34, 243 (1977); H. Paulsen, Angew. Chem. Int. Ed. Engl., 21, 155 (1982).
- M. Sugimoto and T. Ogawa, Glycoconjugate J., 2, 5 (1985); M. Sugimoto, T. Horisaki, and T. Ogawa, *ibid.*, 2, 11 (1985); K. Koike, M. Sugimoto, Y. Nakahara, and T. Ogawa, *ibid.*, 2, 105 (1985); Y. Ito, M. Sugimoto, S. Sato, and T. Ogawa, *Tetrahedron Lett.*, 27, 4753 (1986); S. Sato, Y. Ito, and T. Ogawa, *Carbohydr. Res.*, 155, C1 (1986); M. Sugimoto, M. Numata, K. Koike, Y. Nakahara, and T. Ogawa, *ibid.*, 156, C1 (1986); K. Koike, M. Sugimoto, Y. Nakahara, and T.

Ogawa, Carbohydr. Res., 162, 237 (1987); K. Koike, M. Sugimoto, S. Sato, Y. Ito, Y. Nakahara, and T. Ogawa, *ibid.*, 163, 189 (1987); M. Numata, M. Sugimoto, K. Koike, and T. Ogawa, *ibid.*, 163, 209 (1987); K. Koike, M. Mori, Y. Ito, Y. Nakahara, and T. Ogawa, *Glycoconjugate J.*, 4, 109 (1987).

- 4) Y. Ito, S. Sato, M. Mori, and T. Ogawa, J. Carbohydr. Chem., in press.
- 5) K. Koike, M. Sugimoto, S. Sato, Y. Ito, Y. Nakahara, and T. Ogawa, *Carbohydr. Res.*, 163, 189 (1987).
- H. Kunz and A. Harreus, Liebigs Ann. Chem., 41 (1982); J. Vlahov and G. Snatzke, Liebigs Ann. Chem., 570 (1983); R. R. Schmidt and P. Zimmermann, Angew. Chem. Int. Ed. Engl., 25, 725 (1986).
- 7) 6: [α]D +58.9° (c 0.6, CHCl3), δH(CDCl3) 6.505 (d, 3.7 Hz, H-1a). 7: δH(CDCl3) 5.687 (dd, 0.17 H, 2.6 and 53.0 Hz, H-1aa) and 5.314 (dd, 0.87 H, 5.8 and 52.5 Hz, H-1ab). 11: [a]D -3.7° (c 0.5, CHCl3), δH(CDCl3) 5.333 (d, 3.4 Hz, H-4b), 5.015 (d, 7.9 Hz, H-1c), 4.419 (d, 7.9 Hz, H-1b), 4.313 (d, 7.9 Hz, H-1a), 1.124 (s, pivaloyl Me), 0.995 (s, tBu). 12: $[\alpha]_D 0^\circ$ (c 0.05, MeOH); $\delta_H(DMSOd_{6}, 40^\circ)$ 5.544 (td, 7.0, 15.0 Hz, H-5cer), 5.357 (dd, 7.0, 15.2 Hz, H-4cer), 4.629 (d, 7.9 Hz, H-1c), 4.270 (d, 6.7 Hz, H-1b), 4.169 (d, 7.6 Hz, H-1a), 3.051 (t, 7.9 Hz, H-2a), 1.833 (s, COCH3). 14 : δH(CDCl3) 8.680 (s, C=NH), 6.507 (d, 3.7 Hz, H-1a). 16: $[\alpha]_D$ +12.2° (c 1.1, CHCl₃), δ_H (CDCl₃) 5.588 (dd, 1.8, 4.0 Hz, H-4c), 4.991 (d, 3.7 Hz, H-1c), 4.481 (d, 7.8 Hz, H-1b), 4.434 (d, 7.8 Hz, H-1a), 1.132 (s, pivaloy1 Mc), 0.996 (s, tBu). 18: mp 147-149°; [α]_D +40.5° (c 0.6, MeOH); δ _C(CD₃OD) 106.2 (1b), 98.9 (1a), 22.4 (Me). 19: [α]D -20.9° (c 0.7, CHCl3), δ_H(CDCl3) 5.130 (dd, 7.9 and 9.5 Hz, H-2a); δ_C(CDCl3) 102.7 (1b), 99.7 (1a). 21: $[\alpha]_D$ -13.4° (c 0.7, CHCl3), $\delta_C(CDCl_3)$ 102.5 (1b), 99.7 (1a), 99.5 (1c). 22: δH(CDCl3) 6.294 (d, 0.5 H, 3.7 Hz, H-1aα) and 5.701 (d, 0.5 H, 8.2 Hz, H-1aβ). 25: [α]D +31.2° (c 1.7, CHCl₃), δ_H(CDCl₃) 5.503 (s, CHPh), 1.797 (s, CMc). 26: [α]D -3.8° (c 1.1, CHCl₃), δ_H(CDCl₃) 5.130 (dd, 7.8, 9.4 Hz, H-2a), 4.462 (d, 8.1 Hz, H-1b), 4.405 (d, 7.8 Hz, H-1a); δC(CDCl3) 102.5 (1b), 99.6 (1a). 28: $[\alpha]_D$ +42.6° (c 1.0, CHCl3), δ_H (CDCl3) 5.281 (dd, 3.0, 10.7 Hz, H-3c), 5.097 (dd, 8.1, 9.5 Hz, H-2a), 5.048 (d, 3.7 Hz, H-1c); $\delta_{C}(CDC_{13})$ 103.1 (1b), 100.1 (1c), 99.8 (1a). 29: $\delta_{H}(CDC_{13})$ 6.295 (d, 0.5 H, 4.0 Hz, H-1a α) and 5.723 (d, 0.5 H, 8.3 Hz, H-1a β).
- 8) R. R. Schmidt, Angew. Chem. Int. Et. Engl., 25, 212 (1986).
- 9) T. Mukaiyama, Y. Murai, and S. Shoda, Chem. Lett., 431 (1981); T. Mukaiyama, Y. Hashimoto, and S. Shoda, *ibid.*, 935 (1983).
- 10) S. Ando, K. Kon, M. Isobe, Y. Nagai, and T. Yamakawa, J. Biochem, 79, 625 (1976).
- J. Alais, A. Maranduba and A. Veyrieres, *Tetrahedron Lett.*, 24, 2383 (1983); A. Maranduba and A. Veyrieres, *Carbohydr. Res.*, 135, 330 (1985).
- 12) T. Ogawa, K. Beppu, and S. Nakabayashi, Carbohydr. Res., 93, C6 (1981).
- 13) R. Bose and R. Scheffold, Angew. Chem., 88, 578 (1976); T. Ogawa and S. Nakabayashi, Carbohydr. Res., 93, C1 (1981).
- 14) S. Sato, M. Mori, Y. Ito, and T. Ogawa, Carbohydr. Res., 155, C6 (1986).
- 15) G. Excoffier, D. Gagnaire, and J.-P. Utille, Carbohydr. Res., 39, 368 (1975).
- 16) M. Ek, P. J. Garegg, H. Hultberg, and S. Oscarson, J. Carbohydr. Chem., 2, 305 (1983).
- 17) 27 was prepared in 5 steps from allyl 2,6-di-O-benzyl-β-D-galactopyranoside (1. PhCH(OMe)₂-TsOH in DMF, 2. BH₃•NMe₃-AlCl₃ in THF, 3. Ac₂O-DMAP in Py, 4. (Ph₃P)₃RhCl-DABCO, then HgCl₂-HgO in aq. Me₂CO, 5. SOCl₂-DMF in (ClCH₂)₂, 54% overall). [α]_D +102.2° (c 1.5, CHCl₃); δ_H(CDCl₃) 6.127 (d, 3.9 Hz, H-1), 5.285 (dd, 2.9, 10.3 Hz, H-3).

(Received in Japan 26 April 1988)