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Abstract, Use of the {-buryl dimethylsilyl group 10 selectively protect the primary OH-6 function
allows the facile regioselective per-tosylation of the secondary OH-2 function The t-butyldimethylsilyl
group can be removed without attack at the tosyl function

Regioselective functionalisation of the hydroxyl groups of the cyclodextring has received considerable
attention!, however even with regard to the more reactive primary OH-6 selective per-functionalisation has
proved difficult?, In general methods to regio-selectively functionalise the secondary hydroxyl face are complex
and yields low3, however, promising new methods are being developped?. Recently efficient methods to
protect the more reactive primary OH-6 via the t-butyldimethylsilyl® or thexyldimethylsilyl groups’ have been
developed These methods open possible routes to exploit the differences 1n reactivity between the OH-2 and
OH-3 groups. In this communication we describe the utilisation of the t-butyldimethylsilyl protecting group to
regroselecuvely per-tosylate the secondary OH-2 of B-cyclodextrin,

The synthetic route 18 given below, B-cyclodextrin 1 is first converted to key mtermediate heptakis(6-t-
butyldimethylsilyl-B-cyclodextrin 2, subsequent controlled reaction with p-toluenesulphonyl chlonde (3
equivalents per silylated glucopyranose unit) in pyridine catalysed by 4-N,N-dimethylaminopyridine (DMAP)
leads to complete substitution at the OH-2 giving 3, and the complete dcsﬂylanon 1s carried out with boron
uifluoride etherate in chloroform (alcohol free, redlqmlle:d)
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The reaction 1s carried out at 50°C and carefully monitored by t.l ¢ when the yield of 3 1s maximised ;
the reaction 1s halted by addition of water, Removal of pyridine in vacuo followed column chromatography
{cluant CHCly/2-butanone: 97:3) allow isloation of 3 1n 50% yield.

The 1H nmr spectrum (200 MHz. CDCLy) of 3 are fully consistent with a complete tosylation at the
secodary OH-2 function. The phenyl resonances for 3 are present as a sharp AB pattern at 7.33 and 7.80 ppm.
These resonances are highly sensitive to incomplete or over substitution yielding i both cases highly complex
patterns. The cyclodextrin resonances of 3 have been fully assigned by use of COSY7 Considerable
displacement for certain resonances is observed relative to the parent compound 2, notably for H-2 (4 26 ppm
¢f 3 62 ppm) and OH-3 (3.08 ppm cf 6.74 ppm). We ascribe the upfield displacement of OH-3 as arising from
ring current effects due to the proximity of the phenyl rings as a result of an H-bonding interaction with an =0
of the tosyl group. For compound 4 the use of DMSO-dg as the nmr solvent removes this intramolecular
hydrogen bonding and the OH-3 resonance is observed at 4.8 ppm.

We are currently studying the use of this versaule compound for the modification of B-cyclodextrin at
the secondary face
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7. NMR data (200 MHz for 1H, 50 MHz for 130).

3 (CDCI3): 1H: 5.19 (7H, d, H-1, J1.2=3 49Hz),4.26 (7H, dd, H-2, J1.2=3.49Hz, J2.3=9.66Hz),
3.08 (7H, d, OH-3, J3.0H=3.18Hz), 7.80 (14H, d, TosyD), 7.33 (14H, d, Tosyl), 2.45 (21H, s,
Tosyly, 0.86 (63H, s, Me3CMe28i-), 0.00(42H, s, Me3CMe25i-). 13C: 98.84 (C-1), 80.02, 79.85 (C-
2, C-4), 72 62, 69.93 (C-3, C-5), 62 63 (C-6), 25.81, 18 23, 323, 3.41 (t - BuMeAMeRS1-), 14503,
133.00, 129.55, 128.25, 21.70 (Tosyb).

4 (DMSO-dg): 1H: 5.02 (7H, d, H-1), 4.86 (7H, d, OH-3), 4.45 (7H, brd. HO-6), 7.81 (14H, d,
Tosyl), 7.41 (14H, d, Tosyl), 2 40 (21H, S, Tosyl). 13C 95.76 (C-1), 79.19, 76.72(C-4, C-2), 71 02,
68 37 (C-3, C-5), 59.15 (C-6), 144.46, 132.62, 129.36, 127.76, 20.85 (Tosyl)
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