The π -(Hydroxyalkenyl)germane Complexes $Rh(acac) \{\eta^2 - (E) - Et_3GeCH = CHC(OH)R_2\} (PCy_3) (R = Me_3)$ Ph) as Intermediates in the Hydrogermylation of Alkynols Catalyzed by Rh(acac)(cyclooctene)(PCy₃)

Miguel A. Esteruelas,* Marta Martín, and Luis A. Oro

Departamento de Química Inorgánica-Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain

Received December 28, 1998

Summary: The (hydroxyalkenyl)germanes (E)-R₃Ge- $CH=CHC(OH)R'_2$ (R = Et, Ph; R' = Me, Ph) are prepared in quantitative yield, and in a catalytic manner, by addition of germanes to the alkynols $HC \equiv CC$ - $(OH)R_2$ (R' = Me, Ph) in the presence of the complex Rh(acac)(cyclooctene)(PCy₃). During the reactions four cycles are evident. They have as a common point the intermediates $Rh(acac)\{\eta^2-(E)-CH(GeR_3)=CHC(OH) R'_{2}$ (PCy₃), which have been isolated for R = Et and R'= Me, Ph.

Alkenylstannanes are very versatile organometallic reagents in palladium-catalyzed coupling reactions.¹ Some, however, are toxic. Alkenylgermanes show a very low toxicity,² and therefore, they could serve as alternatives to the organotin reagents.

The hydrogermylation of alkynes is a simple route to alkenylgermanes. These reactions take place readily in the presence of catalytic amounts of a free radical initiator such as azobis(isobutyronitrile), but such reactions generally are not highly regio- and stereoselective.³ The stereoselective formation of alkenylgermanes by addition of a germanium hydride to alkynes requires the presence of transition-metal catalysts.⁴ From a mechanistic point of view, the transition-metal-catalyzed hydrogermylation of alkynes is a field which has not been previously investigated.

Previously, we have reported that the cyclooctene complex Rh(acac)(cyclooctene)(PCy₃) (1) reacts with HGeEt₃ to give the hydrido-germyl compound Rh(acac)H(GeEt₃)(PCy₃) (2).⁵ As a part of our work on the reactivity of transition-metal complexes toward alkynols,⁶ we have investigated the use of 1 and 2 as catalysts for the preparation of (hydroxyalkenyl)germanes.

The compounds (*E*)-Et₃GeCH=CHC(OH)R₂ (R = Me(5), Ph (6)) can be synthesized via the stoichiometric reactions shown in eq 1. The cyclooctene ligand of **1** is

$$H \xrightarrow{I}_{R} \overset{OH}{\rightarrow} H \xrightarrow{I}_{R} H GeEt_{3} \xrightarrow{I}_{R} H$$

R = Me(3), Ph(4)

R = Me (5), Ph (6)

displaced by the alkynols $HC \equiv CC(OH)R_2$ (R = Me (3), Ph (4)) to afford the π -hydroxyalkyne compounds Rh-

(7) This complex has been previously reported; see: Esteruelas, M. A.; Lahoz, F. J.; Martín, M.; Oñate, E.; Oro, L. A. *Organometallics* **1997**, 16, 4572.

⁽¹⁾ Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.

⁽²⁾ Aldridge, W. N. In The Organometallic and Coordination Chemistry of Germanium, Tin and Lead; Gielen, M., Harrison, P. G., Eds.; (3) Oshima, K. In Advances in Metal-Organic Chemistry, Liebeskind,

⁽a) Costinita, R. In Advances in Netar-Organic Chemistry, Lebeskind,
L. S., Ed.; JAI: Greenwich, CT, 1991; Vol. 2, pp 101–141.
(4) (a) Lesbre, M.; Satgé, J. C. R. Acad. Sci. Paris, Ser. C 1960, 250,
2220. (b) Dzhurinskaya, N. G.; Mironov, V. F.; Petrov, A. D. Dokl. Akad.
Nauk SSSR 1961, 138, 1107. (c) Gverdstiteli, I. M.; Buachidze, M. A. Dokl. Akad. Nauk SSSR 1964, 158, 147. (d) Gverdtsiteli, I. M.; Guntsadze, T. P.; Petrov, A. D. *Dokl. Akad. Nauk SSSR* **1964**, *157*, 607. (e) Gverdtsiteli, I. M.; Buachidze, M. A. *Soobshch. Akad. Nauk Gruz. SSSR* **1965**, *37*, 59. (f) Gverdtsiteli, I. M.; Buachidze, M. A. Soobshch. Akad. Nauk Gruz. SSSR **1965**, *37*, 327. (g) Shikhiev, I. A.; Abdullaev, N. D.; Aliev, M. I. Zh. Obshch. Khim. **1966**, *36*, 942. (h) Shikhiev, I. A.; Aslanov, I. A.; Mekhmandarova, N. T. Zh. Obshch. Shikhiev, I. A.; Aslanov, I. A.; Mekhmandarova, N. T. Zh. Obshch. Khim. 1966, 36, 1295. (i) Lesbre, M.; Mazerolles, P.; Satgé, J. In The Organic Compounds of Germanium; Seyferth, D., Ed.; Wiley: Chich-ester, U.K., 1971; Chapter 2. (j) Corriu, R. J. P.; Moreau, J. J. E. J. Organomet. Chem. 1972, 40, 73. (k) Ichinose, Y.; Oda, H.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1987, 60, 3468. (l) Wada, F.; Abe, S.; Yonemaru, N.; Kikukawa, K.; Matsuda, T. Bull. Chem. Soc. Jpn. 1991, 64, 1701. (m) Lukevics, E.; Barabanov, D. I.; Ignatovich, L. M. Appl. Organomet. Chem. 1991, 5, 379.

⁽⁵⁾ Esteruelas, M. A.; Lahoz, F. J.; Oñate, E.; Oro, L. A.; Rodríguez, L. Organometallics 1996, 15, 3670.

^{(6) (}a) Espuelas, J.; Esteruelas, M. A.; Lahoz, F. J.; Oro, L. A.; Ruiz, N. J. Am. Chem. Soc. 1993, 115, 4683. (b) Esteruelas, M. A.; Lahoz, F. J.; Oñate, E.; Oro, L. A.; Zeier, B. *Organometalllics* **1994**, *13*, 1662. (c) Esteruelas, M. A.; Lahoz, F. J.; Oñate, E.; Oro, L. A.; Zeier, B. *Organometallics* **1994**, *13*, 4258. (d) Esteruelas, M. A.; Gómez, A. V.; Lahoz, F. J.; López, A. M.; Oñate, E.; Oro, L. A. *Organometallics* **1996**, *15*, 3423. (e) Edwards, A. J.; Esteruelas, M. A.; Lahoz, F. J.; Modrego, L. Organometal. J.; Scheidel, L. Communatori, M. C. Scheidel, L. Communatori, M. Scheidel, M. C. Scheidel, M. 15, 3423. (e) Edwards, A. J.; Esteruelas, M. A.; Lahoz, F. J.; Modrego, J.; Oro, L. A.; Schrickel, J. Organometallics **1996**, 15, 3556. (f) Bourgault, M.; Castillo, A.; Esteruelas, M. A.; Oñate, E.; Ruiz, N. Organometallics **1997**, 16, 636. (g) Esteruelas, M. A.; Oro, L. A.; Schrickel, J. Organometallics **1997**, 16, 796. (h) Esteruelas, M. A.; López, J. A.; Ruiz, N.; Tolosa, J. I. Organometallics **1997**, 16, 4657. (i) Bohanna, C.; Callejas, B.; Edwards, A. J.; Esteruelas, M. A.; Lahoz, F. J.; Oro, L. A.; Ruiz, N. Valero, C. Organometallics **1998**, 17, 373. (j) Crochet P.; Esteruelas, M. A.; Cutjerrez-Puebla E. Organometallics Crochet, P.; Esteruelas, M. A.; Guiterrez-Puebla, E. *Organometallics* **1998**, *17*, 3114. (k) Crochet, P.; Esteruelas, M. A.; López, A. M.; Ruiz, N.; Tolosa, J. I. Organometallics 1998, 17, 3479.

(acac){ η^2 -HC=CC(OH)R_2}(PCy₃) (R = Me (7), Ph (8)⁷) (Scheme 1). The reactions were carried out at -78 °C, in pentane as solvent, and the reaction products were isolated as yellow solids in 84% (7) and 71% (8) yields. Treatment of toluene solutions of 7 and 8 with 1 equiv of HGeEt₃ at room temperature leads to the π -(hydroxyalkenyl)germane derivatives Rh(acac){ η^2 -(*E*)-Et₃GeCH= CHC(OH)R₂}(PCy₃) (R = Me (9), Ph (10)), which were isolated as orange solids in 65% (9) and 60% (10) yields. Complexes 9 and 10 can also be obtained by addition of 1 equiv of the alkynols 3 and 4 to toluene solutions of 2. By this route, 9 and 10 were obtained in 55% and 50% yields, respectively.

The presence in **9** and **10** of π -(hydroxyalkenyl)germane ligands with *E* stereochemistry at the carbon– carbon double bond is strongly supported by the ¹H NMR spectra of these compounds, which show olefinic resonances at 4.49 and 2.33 (**9**) and 4.96 and 2.72 (**10**) ppm, with H–H coupling constants of 13.8 (**9**) and 13.5 (**10**) Hz. In the ¹³C{¹H} NMR spectra, the resonances due to the sp² carbons appear at 91.0 and 36.9 (**9**) and 86.6 and 40.0 (**10**) ppm.

The (hydroxyalkenyl)germane ligands of **9** and **10** can be displaced by cyclooctene to give **5** and **6** and to regenerate **1**. These reactions along with those previously mentioned constitute two stoichiometric cycles (A and B in Scheme 1) for the formation of the (hydroxyalkenyl)germanes **5** and **6** by addition of HGeEt₃ to the alkynols **3** and **4**, using the cyclooctene complex **1** as a template. These cycles, which differ in the entry order of the reagents into **1**, have the complexes **9** and **10** as common intermediates.

The hydrido–germyl complex **2** and the π -hydroxyalkyne compounds **7** and **8** can also be used as templates for the stoichiometric synthesis of **5** and **6** (cycles C and D in Scheme 2). Thus, we have also observed that, in the absence of cyclooctene and in toluene at room temperature, complexes **9** and **10** react with 1 equiv of HGeEt₃ to give the (hydroxyalkenyl)germanes **5** and **6** in 70% and 78% yields, respectively, and that the addition at -78 °C of the alkynols **3** and **4** to pentane solutions of **9** and **10** affords **5** and **6** and the π -hydroxyalkyne compounds **7** and **8**.

As expected from the chemistry described above, complex 1 efficiently catalyzes the addition of HGeEt₃ to the alkynols 3 and 4. In fact, treatment of 0.67 mmol of 3 and 4 with 0.67 mmol of HGeEt₃ in 0.5 mL of benzene- d_6 and in the presence of 6.7 µmol of 1, at room

Table 1. Product Yields after 48 h of Reaction for the Hydrogermylations of Alkynes Catalyzed by Rh(acac)(cyclooctene)(PCy₃) (1)

alkyne	germane	product	yield (%)
$HC \equiv CC(OH)Ph_2$	HGeEt ₃	(E)-Et ₃ GeCH=CHC(OH)Ph ₂	100
$HC \equiv CC(OH)Ph_2$	HGePh ₃	(<i>E</i>)-Ph ₃ GeCH=CHC(OH)Ph ₂	71
		$CH_2 = C(GePh_3)C(OH)Ph_2$	12
$HC \equiv CC(OH)Me_2$	HGeEt ₃	(E)-Et ₃ GeCH=CHC(OH)Me ₂	100
HC≡CPh	HGeEt ₃	(E)-Et ₃ GeCH=CHPh	87
		CH ₂ =C(GeEt ₃)Ph	10
HC≡CCy	HGeEt ₃	(E)-Et ₃ GeCH=CHCy	81
		$CH_2 = C(GeEt_3)Cy$	17
HC≡CSiMe ₃	HGeEt ₃	(E)-Et ₃ GeCH=CHSiMe ₃	97

temperature, leads after 48 h to 0.67 mmol of the (hydroxyalkenyl)germanes **5** and **6**, according to eq 1.

Complex 1 catalyzes not only the addition of HGeEt₃ to 2-methyl-3-butyn-2-ol and 1,1-diphenyl-2-propyn-1-ol but also the addition of HGeEt₃ to phenylacetylene, cyclohexylacetylene, and (trimethylsilyl)acetylene and the addition of HGePh₃ to 1,1-diphenyl-2-propyn-1-ol (Table 1). These reactions are less selective than those shown in eq 1. Thus, in addition to the *E* isomer the *gem* isomers are also obtained.

In conclusion, (hydroxyalkenyl)germanes, (*E*)-R₃-GeCH=CHC(OH)R'₂, can be prepared in a catalytic process, by addition of R₃GeH to the alkynols in the presence of the complex Rh(acac)(cyclooctene)(PCy₃). Four cycles (A and B in Scheme 1 and C and D in Scheme 2) seem to be involved in the catalytic reaction. Interestingly, they have as a common point the intermediates Rh(acac){ η^2 -(*E*)-R₃GeCH=CHC(OH)R'₂}(PCy₃), which have been isolated for R = Et and R' = Me and Ph. These compounds are the first isolated transitionmetal complexes containing (hydroxyalkenyl)germane ligands.

Experimental Section

All reactions were carried out under an atmosphere of argon using Schlenk-tube techniques. Solvents were dried by the usual procedures and distilled under argon

⁽⁸⁾ Esteruelas, M. A.; Lahoz, F. J.; Oñate, E.; Oro, L. A.; Rodríguez, L.; Steinert, P.; Werner, H. *Organometallics* **1996**, *15*, 3436.

prior to use. The starting material Rh(acac)(cyclooctene)-(PCy₃) (**1**) was prepared by a published method.⁸

Preparation of Rh(acac){ η^2 -HC=CC(OH)Me₂}-(PCy₃) (7). A solution of Rh(acac)(cyclooctene)(PCy₃) (1; 148.2 mg, 0.25 mmol) in 15 mL of pentane was cooled to -78 °C, and then a stoichiometric amount of 2-methyl-3-butyn-2-ol (3; 25 μ L, 0.25 mmol) was added. After the mixture was stirred for 1 h, a yellow solid was formed, which was separated by decantation, washed with pentane, and dried in vacuo. Yield: 119 mg (84%). Anal. Calcd for C₂₈H₄₈O₃PRh: C, 59.36; H, 8.54. Found: C, 59.12; H, 8.08. IR (KBr, cm⁻¹): v(OH) 3416, ν (C=C) 1837, ν (CO)_{acac} 1580 and 1520. ¹H NMR (300 MHz, toluene- d_8 , 293 K): δ 5.14 (s, 1H, CH of acac), 4.29 (s, 1H, OH), 3.89 (s, 1H, HC≡C), 1.9-1.1 (m, 33H, C₆H₁₁), 1.92 (s, 6H, Me), 1.88 and 1.70 (both s, 6H, CH₃ of acac). ${}^{31}P{}^{1}H$ NMR (121.4 MHz, toluene- d_8 , 233 K): δ 50.5 (d, $J_{\text{RhP}} = 179.7$ Hz). ¹³C{¹H} NMR (75.4 MHz, toluene- d_8 , 233 K): δ 186.7 and 184.2 (both s, CO of acac), 99.9 (s, CH of acac), 92.4 (d, $J_{RhC} = 15.7$ Hz, HC= C), 66.3 (s, COH), 66.0 (dd, $J_{RhC} = 18.0$ Hz, $J_{PC} = 6.5$ Hz, HC=C), 32.9 and 32.0 (both s, Me), 31.8 (d, $J_{PC} =$ 22.5 Hz, PCH), 30.3, 28.8, 28.4, 28.3, 28.2, 28.1, and 26.9 (all s, PCy₃), 27.9 and 27.2 (both s, *C*H₃ of acac).

Preparation of Rh(acac){ η^2 -(*E*)-Et₃GeCH=CHC-(OH)R₂}(PCy₃) (R = Me (9), Ph (10)). To a solution of 7 (141.6 mg, 0.25 mmol) or 8 (172.7 mg, 0.25 mmol) in 15 mL of toluene was added a stoichiometric amount of HGeEt₃ (161 μ L, 0.25 mmol). A change in color from yellow to orange occurred almost instantaneously. The solution was concentrated to ca. 0.1 mL in vacuo; addition of methanol caused the precipitation of orangeyellow solids. The solids were separated by decantation, washed with methanol, and dried in vacuo.

Data for 9 are as follows. Yield: 118 mg (65%). Anal. Calcd for C₃₄H₆₄GeO₃PRh: C, 56.14; H, 8.87. Found: C, 56.58; H, 9.19. IR (KBr, cm⁻¹): ν (OH) 3600, ν (CO)_{acac} 1580 and 1516. NMR (C₆D₆): ¹H, δ 5.16 (s, 1H, CH of acac), 4.44 (d, 1H, J_{HH} = 13.8 Hz, =CH), 2.33 (dd, 1H, $J_{\rm HH} = 13.8$, $J_{\rm PH} = 6.0$ Hz, =CHGeEt₃), 2.1–1.2 (m, 33H, C₆H₁₁), 1.94 (s, 3H, Me), 1.80 and 1.75 (both s, 6H, CH₃ of acac), 1.43 (s, 3H, Me), 1.01 (s, 1H, OH); ${}^{31}P{}^{1}H$, δ 41.0 (d, $J_{\text{RhP}} = 182.7 \text{ Hz}$); ¹³C{¹H}, δ 185.8 and 183.0 (both s, *C*O of acac), 99.3 (s, *C*H of acac), 91.0 (d, J_{PC} = 16.7 Hz, =*C*H), 72.2 (s, *C*OH), 39.6 (dd, $J_{PC} = 15.3$ Hz, $J_{\text{RhC}} = 3.3$ Hz, =*C*HGeEt₃), 34.5 (d, $J_{\text{PC}} = 19.5$ Hz, PCH), 32.6 and 31.5 (both s, Me), 31.8, 30.6, 28.6, 28.5 28.4, 28.3, and 26.9 (all s, PCy₃), 27.8 (d, $J_{PC} = 5.7$ Hz, CH₃ of acac), 26.4 (s, CH₃ of acac), 9.9 (s, GeCH₂CH₃), 7.0 (s, GeCH2CH3).

Data for **10** are as follows. Yield: 128 mg (60%). Anal. Calcd for C₄₄H₆₈GeO₃PRh: C, 62.06; H, 8.05. Found: C, 62.31; H, 8.24. IR (KBr, cm⁻¹): ν (OH) 3613, ν (CO)_{acac} 1582 and 1518. NMR (C₆D₆): ¹H, δ 8.6–7.0 (m, 10H, Ph), 5.23 (s, 1H, *CH* of acac), 4.96 (d, 1H, *J*_{HH} = 13.5 Hz, =*CH*), 2.72 (dd, 1H, *J*_{HH} = 13.5 Hz, =*CH*GeEt₃), 2.1–1.1 (m, 33H, C₆H₁₁), 1.97 (s, 1H, OH), 1.81 and 1.78 (both s, 6H, *CH*₃ of acac); ³¹P{¹H}, δ 42.6 (d, *J*_{RhP} = 183.5 Hz); ¹³C{¹H}, δ 186.3 and 183.5 (both s, *C*O of acac), 150.2 and 149.0 (both s, *C_{ipso}*-Ph), 129.6, 128.1, 127.2 and 126.4 (all s, *C_{o.m.p}*-Ph), 99.4 (s, *C*H of acac), 86.6 (d, *J*_{PC} = 17.3 Hz, =*C*H), 80.5 (s, *C*OH), 40.0 (dd, *J*_{PC} = 17.3 Hz, *J*_{RhC} = 4.6 Hz, =*C*HGeEt₃), 34.3 (d, *J*_{PC} = 19.6 Hz, P*C*H), 31.2, 30.2, 28.6, 28.5, 28.3, 28.2, and 27.0 (all s, PCy₃), 27.8 (d, $J_{PC} = 5.8$ Hz, *C*H₃ of acac), 26.5 (s, *C*H₃ of acac), 9.6 (s, GeCH₂*C*H₃), 6.6 (s, Ge*C*H₂CH₃).

The compounds **9** and **10** can also be prepared by reaction of 0.5 mmol of the alkynols **3** and **4** with toluene solutions of 0.5 mmol of compound **2** (yields 200.0 mg (55%) and 212.9 mg (50%), respectively).

Preparation of (*E*)-Et₃GeCH=CHC(OH)R₂ (R = Me (5), Ph (6)). To a solution of 9 (218.1 mg, 0.3 mmol) or 10 (255.4 mg, 0.3 mmol) in 10 mL of toluene was added a stoichiometric amount of cyclooctene (39 μ L, 0.3 mmol). After it was stirred for 1 h, the solution was concentrated to dryness. The residual oil was dissolved in ca. 0.5 mL of pentane and chromatographed on Al₂O₃ (neutral, activity grade I, column length 7 cm). With diethyl ether a colorless fraction was eluted, from which the solvent was removed in vacuo. A colorless oil was obtained.

Data for **5** are as follows. NMR (C_6D_6): ¹H, δ 6.12 (part A of an AB system, 1H, $J_{HH} = 18.6$ Hz, =*CH*), 5.95 (part B of an AB system, 1H, $J_{HH} = 18.6$ Hz, = *CH*GeEt₃), 1.17 (s, 7H, Me and OH), 1.06 (t, 9H, $J_{HH} =$ 7.9 Hz, GeCH₂CH₃), 0.79 (q, 6H, $J_{HH} =$ 7.9 Hz, GeCH₂-CH₃); ¹³C{¹H}, δ 154.1 (s, =*C*H), 120.9 (s, =*C*HGeEt₃), 71.6 (s, *C*OH), 29.7 (s, Me), 9.1 (s, GeCH₂*C*H₃), 4.6 (s, Ge*C*H₂CH₃). MS: *m*/*z* 246 (M⁺).

Data for **6** are as follows. NMR (C_6D_6): ¹H, δ 7.5–7.0 (m, 10H, Ph), 6.63 (part A of an AB system, 1H, J_{HH} = 18.6 Hz, =C*H*), 6.16 (part B of an AB system, 1H, J_{HH} = 18.6 Hz, =C*H*GeEt₃), 1.96 (s, 1H, OH), 1.01 (t, 9H, J_{HH} = 7.7 Hz, GeCH₂C*H*₃), 0.76 (q, 6H, J_{HH} = 7.7 Hz, GeC*H*₂CH₃); ¹³C{¹H}, δ 150.9 (s, =*C*H), 146.8 (s, $C_{ipso-Ph}$), 128.3, 127.5 and 127.3 (all s, $C_{o,m,p-Ph}$), 125.0 (s, = *C*HGeEt₃), 80.6 (s, *C*OH), 9.1 (s, GeCH₂CH₃), 4.6 (s, GeCH₂CH₃). MS: m/z 370 (M⁺).

The compounds **5** and **6** can also be obtained by reaction of 0.5 mmol of complexes **9** and **10** with 0.5 mmol of HGeEt₃ (yields: 85.4 mg (70%) and 143.9 mg (78%), respectively).

Catalytic Studies. The catalytic reactions were carried out at room temperature in NMR tubes containing 0.0067 mmol of **1**, 0.67 mmol of HGeR₃, and 0.67 mmol of alkyne in 0.5 mL of benzene- d_6 .

Selected NMR spectroscopic data are as follows. (E)-**Ph₃GeCH=CHC(OH)Ph₂:** ¹H, δ 6.97 (part A of an AB system, 1 H, J_{HH} = 18.3, =CH), 6.77 (part B of an AB system, 1 H, $J_{\text{HH}} = 18.3$, =CHGePh₃); ¹³C{¹H}, δ 154.5 $(s, =CH), 122.5 (s, =CHGePh_3), 80.7 (s, COH).$ **CH₂=C(GePh₃)C(OH)Ph₂:** ¹H, δ 5.86 (d, 1 H, J_{HH} = $0.9, =CH_2$, 5.56 (d, 1 H, $J_{HH} = 0.9, =CH_2$). (E)-**Et₃GeCH=CHPh**: ¹H, δ 6.90 (part A of an AB system, 1 H, $J_{HH} = 19.2$, =CH), 6.61 (part B of an AB system, 1 H, $J_{\rm HH} = 19.2$, =CHGeEt₃); ¹³C{¹H}, δ 144.3 (s, =CH), 127.3 (s, $=CHGeEt_3$), 9.0 (s, $GeCH_2CH_3$), 4.5 (s, Ge*C*H₂CH₃). **CH₂=C(GeEt₃)Ph**: ¹H, δ 5.90 (d, 1 H, *J*_{HH} = 2.8, = CH_2), 5.40 (d, 1 H, J_{HH} = 2.8, = CH_2). (E)-**Et₃GeCH=CHCy**: ¹H, δ 5.95 (dd, 1 H, J_{HH} = 18.6, $J_{\text{HH}'}$ = 5.7, =CH), 5.73 (dd, 1 H, $J_{HH} = 18.6$, $J_{HH'} = 1.2$, =CHGeEt₃); ${}^{13}C{}^{1}H$, δ 152.8 (s, =CH), 123.0 (s, $=CHGeEt_3$), 9.0 (s, GeCH₂CH₃), 4.4 (s, GeCH₂CH₃). **CH₂=C(GeEt₃)Cy**: ¹H, δ 5.65 (dd, 1 H, $J_{\text{HH}} = 2.2$, $J_{\text{HH}'}$ $= 1.2, =CH_2$, 5.19 (dd, 1 H, $J_{HH} = 2.2, J_{HH'} = 0.7$, =CH₂). (E)-Et₃GeCH=CHSiMe₃: ¹H, δ 6.85 (part A

Acknowledgment. We thank the DGICYT (Projects PB 94-1186 and PB 95-0806, Programa de Promoción General del Conocimiento) for financial support.

OM981042N