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Abstruct: N,N-Dibenzylamino aldehydes, readily accessible from amino acids, can be 
converted into y-KN-dibenzylamino a$-didehydro amino acid esters without racemization; 
these undergo stereoselective Diels-Alder reactions and 13-dipolar cycloaddition with diazo- 
methane, the sense of diastereoselectivity being opposite to that predicted by the 
conventional principle of 1.3-allylic strain. 

The so-called a$-didehydro amino acids not only deserve attention as biologically active 

compounds (e.g.. as components in peptide antibiotics)‘), they are also useful as prochiral building blocks in 

synthetic organic chemistry (e.g., in enantioselective hydrogenation with formation of a-amino acids)2). We 

report here the synthesis and cycloaddition reactions of y-N,N-dibedzylamino a$-didehydro amino acid 

esters 3. Using the Schollkopf isonitrile method3). compounds 314 were prepared without racemization and 

readily separated by chromatography or fractional crystallization4) (Table 1). 
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Table 1. Preparation of y-amino a$-didehydro amino acid ester 3/4 

Compounds R Yield (%) 3 : 4 

3a/4a CH3 61 68 : 32 

3b14b PhCH2 46 54 : 46 

4&c (CH&CH 55 67 : 33 

3dl4d (CH3),CHCH2 85 82 : 18 

3eJ4e tBuMe2SiOCH2 76 74 : 26 
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The Z- and E-assignments of 3 and 4, respectively, were made on the basis 

the help of an X-ray structure determination of 3a6) (Fig. 1). 

Fig. 1. Crystal structure of 3a 

of NMR data and with 

Fig. 1 shows that the hydrogen at the stereogenic center occupies the “eclipsed” position in the plane 

of the neighboring x-system (dihedral angle C4-C3-C2-H, $ = 0.6’). in line with expections based on the 

principle of 1,3-allylic strain’). This makes the bottom side of the oletinic x-bond (C3-Re, CCSi) sterically 

shielded, so that cycloaddition reactions should occur from the top (C3-Si. C4-Re). Upon reacting 3a with 

cyclopentadiene in the presence of EtaAlCl(2 eq./CH,Cl&?d), cycloadduct 5a was obtained essentially as a 

single diastereomer*). As proven by an X-my structure determination of 5as), the relative (and absolute) 

configuration is as shown in formula 5. The result means complete endo-selectivity with respect to the 

formylamino group’) as well as very high diastereofacial selectivity. Surprisingly, the sense of diastereo- 

facial selectivity is onposite to the above expectation. Thus, cyclopentadiene adds from the bottom side 

(C3-Re, CCSi) which appears to be the sterically more hindered x-face (cf. Fig. 1). Compounds 3b,d,e react 

slower (9 - 12 d) and less selectively. 

HNCHO 

a R = CH,: ds = 96%; 74% yield 

b R = PhCH,: ds = 82%; 60% yield 

c R = (CHs)2CH: no reaction 

d R = (CHs)2CHCH2: ds = 86%; 43% yield 

e R = rBuMe2SiOCH2: ds = 78%; 72% yield 

The sense of diastereoselectivity turned out to be the same in 1,3-dipolar cycloaddition reactions 

using diazomethane’O) (Table 2), as shown by an X-ray structure determination of 6a8). 
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Table 2. 1,3-Dipolar Cycloaddition Reactions of 3 with Diazomethane at Room Temperature 

Compound R Time Yield 6 : 7 
(h) (% isolated) 

3a CH3 20 71 >95 : <5 

3b F’hCH, 18 74 86 : 14 

3c Me&H 120 0 

3d MeaCHCHa 96 60 74 : 26 

3e tBuMeaSiOCHz 18 76 90 : 10 

Clearly, conformers of the type shown in Fig. 1 cannot be involved in the transition state of cyclo- 

addition. The geometry of the ground state in solution is difficult to determine with certainty by NMR using 

a modified Karplus relation1t*12) due to the presence of heteroatoms in 3. Nevertheless, the proton coupling 

constants 3J2s indicate that the allylic H-atom is probably not “eclipsed” with the possible exception of 3c 

(3~ 6.6 Hz; 3b: 6.9 Hz; 3c: 10.1 Hz; 3d 6.9 Hz; 3e: 7.0 Hz). As a qualitative model for explaining the 

observed stereoselectivity we propose that in the transition state steric and torsional interactions within a 

compound 3 as well as steric repulsion between the two reactants need to be considered, and that a 

compromise can be achieved if the allylic H-atom points toward the incoming “flat” n-system13) achieved 

by rotation of the C2-C3 bond (cf. Fig. l), as in 8 or in 9. This places the bulky amino group in the “outside” 

and the smaller R-group in the “inside” position. On this basis it becomes clear why diastereoselectivity 

decreases as R increases in size. Rotation of the C2-C3 bond (cf. Fig. 1) in the other direction places the 

bulky amino group in the “inside” position (e.g. 10). giving rise to appreciable 1,3-allylic strain (steep 

rotational profile between $ = 270” and $ = 360’)*). In the case of the bulky ester 3c a conformer of the type 

shown in Fig. 1 is likely to prevail, causing effective shielding of bc& x-faces so that no reaction occurs. 

Our model seems to have some generality, since a compound related to 3a in which the N,N-dibenzylamino 

moiety is replaced by a phenyl group (prepared from 2-phenylpropanal by the Schollkopf method) reacts 

with CH2N2 to produce a 73 : 27 mixture of diastereomers, the sense of diastereoselectivity being the same 

(C3-Re, CCSi attack)*). 
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In summary, care must be taken in applying the principle of 1.3~allylic ~traln’*~~*‘~). In particular, the 

transition state of reactions need to be considered. Our results bear some relationship to other recent reports 

of 1.3~allyllc strain as a controlling element. For example, Barrett has coined the term “stealth stereocontrol” 

to explain the stereochemical reversal of certain Michael additions in which the H-atom at the chiral allylic 

center is believed to point toward the incoming “flat” nucleophile14). Mevers has also stressed the 

combination of 13-allyllc strain and other factors”). 
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