

Available online at www.sciencedirect.com

Mendeleev Commun., 2013, 23, 187-189

Mendeleev Communications

Annelated 4,5-diazaspiro[2.4]hepta-4,6-diene obtained by [3+2] cycloaddition of diazocyclopropane to cyclooctyne

Evgeny V. Shulishov, Yury V. Tomilov* and Oleg M. Nefedov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation. Fax: +7 499 135 5328; e-mail: tom@ioc.ac.ru

DOI: 10.1016/j.mencom.2013.07.002

The 1,3-dipolar cycloaddition of diazocyclopropane generated *in situ* to cyclooctyne at -30 to -25 °C afforded highly reactive spiro(9,10-diazabicyclo[6.3.0]undeca-1(8),9-diene-11,1'-cyclopropane) which can add nucleophiles to the azocyclopropane fragment or undergo oligomerization with three-membered ring opening.

Diazocyclopropane, which is susceptible to 1,3-dipolar cycloaddition^{1–3} similarly to typical aliphatic diazo compounds, is one of the most important intermediates formed upon the decomposition of *N*-nitroso-*N*-cyclopropylurea **1** under the action of strong bases. The addition of diazocyclopropane to 1,3-dienes and the activated double bonds of levoglucosenone⁴ and isomeric alantolactones⁵ was described. Meantime, the interaction of diazocyclopropane with alkynes was unknown. In this work, we studied for the first time the 1,3-dipolar cycloaddition of diazocyclopropane to the triple bond of cyclooctyne.

We found that diazocyclopropane generated from N-cyclopropyl-N-nitrosourea 1 under the action of sodium methoxide or potassium carbonate did not give cycloaddition products with usual alkynes, dimethyl acetylenedicarboxylate or phenyl propargyl sulfide. In this connection, we turned to cyclooctyne 2 - an accessible alkyne with a strained triple bond,⁶ which is stable at room temperature. Cyclooctyne 2 is known to easily react with diazomethane to form annelated 1H-pyrazole 3.⁷ It was assumed that condensed 3H-pyrazole 4, which contains a 4,5-diazaspiro[2,4]heptadiene fragment, can be the product of a reaction between cyclooctyne and diazocyclopropane, since it contains no α -protons in the heterocycle. Compounds with this structure were not described until now, although attempts to generate 4,5-diazaspiro[2,4]heptadiene were undertaken, for example, during dehydrobromination of 5-bromospiro(1-pyrazoline-3,1'cyclopropane).⁸ Structural analogues of the test heterocycle, namely 5,6-diazaspiro[2.4]hepta-4,6-dienes 5a,b, are known, but these compounds were only detected in NMR experiments.9

Initially, we used the decomposition of nitrosourea **1** with sodium methoxide at a temperature from -40 to -10 °C for the generation of diazocyclopropane in the presence of cyclooctyne. However, elaboration of this reaction in CD₂Cl₂ in a NMR tube showed that, under these conditions, different processes occurred to lead to a mixture of compounds; the ¹H and ¹³C NMR spectra of some of these compounds clearly exhibited signals of methoxy groups and isolated 1,2-ethylidene fragments. Nevertheless, in a number of cases at a temperature no higher than -15 °C, low-intensity signals were observed in the ¹H NMR spectrum, which

can be attributed to cycloadduct **4**, and these signals disappeared upon heating the sample above 0 °C. Evidently, the methoxide anion participated in the formation of some reaction products.

To avoid further transformations, we used another base for the decomposition of nitrosourea 1, namely, potassium tert-butoxide, which effectively works at a low temperature and gives less nucleophilic tert-butanol. Addition of potassium tert-butoxide to a mixture of nitrosourea 1 and cyclooctyne in CD₂Cl₂ at -40 °C did not cause noticeable changes. However, the initially yellow colour of the reaction mixture almost completely disappeared upon slow heating to -30...-25°C, with noticeable release of nitrogen having not been observed. ¹H and ¹³C NMR spectra recorded at -25°C showed a significant consumption of the starting reactants 1 and 2 and the appearance of characteristic signals of cycloadduct 4, whose integral intensities corresponded to the yield of compound 4 of no lower than 75% (Scheme 1).[†] The 2D COSY, HSQC and HMBC spectra confirmed the structure of compound 4. The key spirocyclopropane fragment manifested itself in the ¹³C NMR spectra as signals at δ 19.8 and 75.2 ppm. The olefin C atoms resonated at δ 147 and 155 ppm. In the ¹H NMR spectrum, the nonequivalent protons of a cyclopropane ring appeared as two

[†] Spiro(9,10-diazabicyclo[6.3.0]undeca-1(8),9-diene-11,1'-cyclopropane) **4**. Solid Bu'OK (0.09 mmol) was added in one portion to a mixture of *N*-cyclopropyl-*N*-nitrosourea **1** (0.09 mmol) and cyclooctyne **2** (0.08 mmol) in CD₂Cl₂ (0.5 ml) at –40 °C, and the reaction mixture was kept at –30 °C for several minutes until the yellow colour disappeared. The main signals in NMR spectra corresponded to compound **4**. ¹H NMR (CDCl₃, 300 MHz) δ : 1.46–1.52 (m, 4H, H₂C⁴ and H₂C⁵), 1.65–1.74 (m, 2H, H₂C³), 1.78–1.85 (m, 2H, H₂C⁶), 2.02 (m, 2H, H²' and H^{3'}), 2.24–2.30 (m, 2H, H₂C⁷), 2.72 (m, 2H, H^{2'} and H^{3'}, directed to the N atoms), 3.01–3.07 (m, 2H, H₂C⁷), 1³C NMR (CDCl₃, 75.5 MHz) δ : 19.81 (C^{2'} and C^{3'}), 20.92 (C²), 24.42 and 24.90 (C⁴ and C⁵), 24.81 (C⁷), 26.27 (C³), 26.55 (C⁶), 75.19 (C^{1'}), 147.08 (C¹), 155.00 (C⁸).

multiplets looking like quartets at δ 2.02 and 2.72 ppm, which were downfield shifted by 0.6–0.8 ppm, as compared with the analogous signals of the relative spiro(1-pyrazoline-3,1'-cyclopropanes).^{4,5,8} In this case, as in the latter, the signal of vicinal protons in a cyclopropane fragment, oriented towards nitrogen atoms, appeared in a lower field. Note that the experimentally observed chemical shifts of all signals in the ¹H and ¹³C NMR spectra were close to those calculated using the PRIRODA program.¹⁰

According to NMR-spectroscopic data, 4,5-diazaspiro[2,4]-heptadiene **4** is stable at -15 °C for 1 h. However, the spectrum of the sample became strongly complicated after storage at this temperature for 10–12 h to indicate that it underwent oligomerization.

At the same time, if the reaction mixture obtained at -30 °C, which mainly contained compound **4**, was immediately treated with methanol, stable (2-methoxyethyl)pyrazole **6** was formed in 73% yield (based on nitrosourea after column chromatography) as a result of cyclopropane ring opening in spiro compound **4** with the addition of a methanol molecule (Scheme 2).[‡] The position of double bonds in the heterocyclic moiety of product **6** is shown tentatively; in fact, rapid prototropic isomerization occurs as in the majority of HN pyrazoles because the observed line half-width in the ¹³C NMR spectrum is 20 Hz for both of the α -C atoms of the pyrazole fragment at 25 °C, whereas it is 2 Hz for the β -C atom.

Note that compound **6** was also formed when MeONa/MeOH was used to decompose nitrosourea **1** in the presence of cyclooctyne in our preliminary experiments.

Similar addition of thiophenol to diazaspiroheptadiene 4, which was obtained at -30 °C, in the course of heating the reaction mixture gave (2-phenylthioethyl)pyrazole 7 (Scheme 2).[‡]

An unexpected result was obtained when an excess of cyclopropylnitrosourea **1** was used in a reaction with cyclooctyne **2**. Thus, upon the slow heating (from -30 to 20 °C) of the reaction mixture containing compounds **1** and **2**, MeONa and MeOH in a molar ratio of 2.5:1:4:4, compound **8** bearing a cyclopropyloxodiazene fragment was produced in addition to methoxy derivative **6** (Scheme 2).[§] Compound **8** resulted from the generation of cyclopropyldiazohydroxide **9** at a step of nitrosourea **1**

11-(2-Phenylthioethyl)-9,10-diazabicyclo[6.3.0]undeca-1(8),10-diene 7. Similarly, to a mixture containing compound 4, thiophenol (10 mg) was added at -25 °C, and the mixture was allowed to warm to room temperature. New compound 7 was isolated by chromatography on silica gel (benzene–EtOAc, 1:1) in 65% yield as yellowish thick oil. ¹H NMR (CDCl₃, 300 MHz) δ : 1.39–1.50 (m, 4H, 2CH₂), 1.55–1.64 and 1.68–1.76 (2m, 2×2H, 2CH₂), 2.45–2.52 and 2.76–2.82 (2m, 2×2H, H₂C² and H₂C⁷), 2.95 (t, 2H, CH₂, *J*.7.5 Hz), 3.26 (t, 2H, SCH₂, *J*.7.5 Hz), 7.18 (m, 1H, *p*-H_{ph}), 7.38 (m, 2H, *m*-H_{ph}), 7.36 (m, 2H, *o*-H_{ph}), 12.5 (br.s, 1H, NH). ¹³C NMR (CDCl₃, 75.5 MHz) δ : 21.06, 24.38, 25.44, 25.48, 29.07, 29.52 (all CH₂), 25.30 (CH₂CH₂S), 33.13 (CH₂S), 126.31 (*p*-CH), 129.06 (*m*-CH), 129.56 (*o*-CH), 116.57 (C1), 135.71 (*i*-C), 143.82 and 146.38 (C⁸ and C¹¹). ¹⁵N NMR (CDCl₃, 30.4 MHz, MeNO₂ as a standard) δ : -158 and -166. HRMS, *m*/z: 287.1579, 309.1400 (calc. for C₁₇H₂₂N₂S: 287.1576 [M+H]⁺, 309.1396 [M+Na]⁺).

Scheme 2 Reagents and conditions: i, NuH, CD_2Cl_2 , $-20 \rightarrow 20$ °C; ii, 1, MeONa/MeOH, CD_2Cl_2 , $-20 \rightarrow 20$ °C.

decomposition and its addition to the unstable molecule of **4** in a temperature range from -20 to 20 °C. Note that the decomposition of nitrosourea **1** under the action of Bu^tOK does not lead to the noticeable formation of oxodiazene **8**, which can be related to a low probability of the generation of free diazohydroxide **9** in the absence of methanol.

The presence of an azoxy group in compound **8** was detected based on the ¹⁴N NMR spectrum and confirmed by mass-spectrometric data. The chemical shifts of all of the four nitrogen atoms were identified by 2D {¹H–¹⁵N}HMBC NMR. The set of ¹³C and ¹⁵N NMR-spectroscopic data also indicates that azoxy derivative **8** is formed as a single isomer, and the line broadening of the quaternary carbon atoms in its ¹³C NMR spectrum is much lower ($\Delta \nu$ 4 Hz for α -C atoms) than that in pyrazole **6**, which may be due to the formation of an intramolecular hydrogen bond.

To conclude, we were the first to detect substituted 4,5-diazaspiro[2.4]hepta-4,6-diene **4**, which was formed by the trapping of *in situ* generated diazocyclopropane by cyclooctyne, with the aid of low-temperature NMR spectroscopy. The discovered high reactivity of this species makes it promising for the preparation of new unusual derivatives as well as for general knowledge of polycyclic compound chemistry.

This work was supported by the Russian Federation President Council for Grants (Programme for State Support of Leading Scientific Schools of the Russian Federation, grant no. NSh-604.2012.3) and the Division of Chemistry and Materials Science of the Russian Academy of Sciences (Programme for Basic Research 'Theoretical and Experimental Study of the Nature of Chemical Bonds and Mechanisms of Important Chemical Reactions and Processes').

References

1 Yu. V. Tomilov, I. V. Kostyuchenko and O. M. Nefedov, *Russ. Chem. Rev.*, 2000, **69**, 461 (*Usp. Khim.*, 2000, **69**, 507).

[‡] 11-(2-Methoxyethyl)-9,10-diazabicyclo[6.3.0]undeca-1(8),10-diene **6**. To a mixture containing compound **4**, which was obtained as described above, methanol (10 mg) was added at -25 °C, and the mixture was allowed to warm to room temperature. Compound **6** was isolated by chromatography on silica gel (eluent, EtOAc) in 73% yield as yellowish thick oil. ¹H NMR (CDCl₃, 300 MHz) δ: 1.40–1.50 (m, 4 H, 2 CH₂), 1.55–1.63 and 1.65–1.73 (2m, 2×2 H, 2 CH₂), 2.49–2.54 and 2.70–2.75 (2m, 2×2 H, H₂C² and H₂C⁷), 2.82 (t, 2 H, CH₂, *J* 6.6 Hz), 3.38 (s, 3 H, MeO), 3.60 (t, 2H, OCH₂, *J* 6.6 Hz), 8.00 (br. s, 1H, NH). ¹³C NMR (CDCl₃, 75.5 MHz) δ: 21.25, 24.75, 25.33, 25.63, 25.65, 29.38 and 29.76 (all CH₂), 58.77 (MeO), 71.93 (OCH₂), 115.15 (C¹), 141.6 and 148.2 (br., Δν 20 Hz, C⁸ and C¹¹). ¹⁵N NMR (CDCl₃, 30.4 MHz, MeNO₂ as a standard) δ: –134 and –157. HRMS, *m/z*: 209.1652, 231.1463 (calc. for C₁₂H₂₀N₂O: 209.1648 [M+H]⁺, 231.1468 [M+Na]⁺).

^{§ 1-}Oxo-1-[2-(4,5,6,7,8,9-hexahydro-1H-cycloocta[c]pyrazolyl)ethyl]-2-cyclopropyldiazene 8. Dry MeONa (4 mmol) was added to a mixture of 1 (2.5 mmol), cyclooctyne (1 mmol) and methanol (4 mmol) in dichloromethane (4 ml) with stirring at -30 °C, and the reaction mixture was allowed to warm to room temperature for 15 min. Then, water was added, the organic layer was dried with Na2SO4, and the solvent was removed in vacuo. Column chromatography on silica gel (eluent, AcOEt) gave methoxy derivative 6 (26%) and diazene oxide 8 (58%) as yellowish thick oil. ¹H NMR (CDCl₃, 300 MHz) δ: 0.85–0.94 and 0.97–1.06 (2 m, 2×2 H, CH₂CH₂), 1.39-1.50 and 1.55-1.73 (2m, 2×4H, 4CH₂), 2.49-2.55 and 2.69–2.75 (2 m, 2×2 H, H_2C^2 and H_2C^7), 3.22 (t, 2 H, CH_2 , ³J 7.4 Hz), 3.83 (m, 1H, CH), 4.37 (t, 2H, NCH2, J 7.4 Hz), 8.60 (br.s, 1H, NH). ¹³C NMR (CDCl₃, 75.5 MHz) δ: 8.15 (CH₂CH₂), 21.22 (CH₂C=), 24.31, 24.78, 25.56, 25.61, 29.38, 29.69 (6CH₂), 33.96 (CH), 69.46 (NCH₂), 115.66 (C=C-C), 142.41 and 145.55 (-C=N and =C-N). ¹⁴N NMR (CDCl₃, 21.7 MHz, MeNO₂ as a standard) δ : -41 (N=N \rightarrow O, $\Delta \nu$ 450 Hz). ¹⁵N NMR $(CDCl_3, 30.4 \text{ MHz}, MeNO_2 \text{ as a standard}) \delta: -25 (N=N \rightarrow O), -46 (N=N \rightarrow O),$ -131 (N=N-H), -154 (N=N-H). HRMS, m/z: 263.1861 (calc. for C14H22N4O: 263.1866 [M+H]+).

- 2 I. V. Kostyuchenko, E. V. Shulishov, R. R. Rafikov and Yu. V. Tomilov, *Russ. Chem. Bull., Int. Ed.*, 2008, **57**, 1712 (*Izv. Akad. Nauk, Ser. Khim.*, 2008, 1680).
- 3 Yu. V. Tomilov, E. V. Shulishov, G. P. Okonnishnikova and O. M. Nefedov, *Russ. Chem. Bull.*, 1995, **44**, 2105 (*Izv. Akad. Nauk, Ser. Khim.*, 1995, 2199).
- 4 R. R. Rafikov, R. A. Novikov, E. V. Shulishov, L. D. Konyushkin, V. V. Semenov and Yu. V. Tomilov, *Russ. Chem. Bull., Int. Ed.*, 2009, 58, 1927 (*Izv. Akad. Nauk, Ser. Khim.*, 2009, 1866).
- 5 Yu. V. Tomilov, E. V. Revunov, E. V. Shulishov and V. V. Semenov, *Russ. Chem. Bull., Int. Ed.*, 2012, **61**, 280 (*Izv. Akad. Nauk, Ser. Khim.*, 2012, 280).
- 6 (a) G. Wittig and A. Krebs, *Chem. Ber.*, 1961, **94**, 3260; (b) L. Brandsma and H. D. Verkruijsse, *Synthesis*, 1978, 290; (c) A. Ramires, E. Lobkovsky and D. B. Collum, *J. Am. Chem. Soc.*, 2003, **125**, 15376; (d) Y. Ma, A. Ramires, J. Singh, I. Keresztes and D. B. Collum, *J. Am. Chem. Soc.*, 2006, **128**, 15399.
- 7 P. König, J. Zountsas, K. Bleckman and H. Meier, *Chem. Ber.*, 1983, 116, 3580.

- 8 Yu. V. Tomilov, I. V. Kostyuchenko, E. V. Shulishov and O. M. Nefedov, *Russ. Chem. Bull.*, 1998, **47**, 666 (*Izv. Akad. Nauk, Ser. Khim.*, 1998, 688).
- 9 (a) N. S. Zefirov, S. I. Kozhushkov, T. S. Kuznetsova, B. A. Ershov and S. I. Selivanov, *Tetrahedron*, 1986, **42**, 709; (b) D. Zimmerman, Y. L. Janin, L. Brehm, H. Brauner-Osborne, B. Ebert, T. N. Johansen, U. Madsen and P. Krogsgaard-Larsen, *Eur. J. Med. Chem.*, 1999, **34**, 967.
- 10 (a) D. N. Laikov and Yu. A. Ustynyuk, Russ. Chem. Bull., Int. Ed., 2005, 54, 820 (Izv. Akad. Nauk, Ser. Khim., 2005, 804); (b) D. N. Laikov, Chem. Phys. Lett., 2005, 416, 116; (c) P. A. Belyakov and V. P. Ananikov, Russ. Chem. Bull., Int. Ed., 2011, 60, 783 (Izv. Akad. Nauk, Ser. Khim., 2011, 765).

Received: 11th April 2013; Com. 13/4103