Synthesis of Benzazepines by Gold-Catalysed Reactions of N-Allenylamides

Álvaro González-Gómez,^[a] Gema Domínguez,^[a] and Javier Pérez-Castells*^[a]

Keywords: Gold / Cyclization / Allenes / Nitrogen heterocycles

The gold-catalysed reactions of alleneamides give different products depending on the substrate and the reaction conditions. In particular, N-(2-alkynylphenyl)-N-allenyltosylamides give benzazepines when using gold(III) catalysts in the presence of nucleophiles. This sequential process may follow two different reaction pathways, and these are discussed. Metal coordination to the alkyne followed by nucleophilic at-

Introduction

New reactions recently discovered in the field of gold catalysis have focused attention on this metal.^[1] Gold(I) and gold(III) species catalyse the cycloisomerization of envnes and nucleophilic additions to π systems.^[2] Allenes have been used in these reactions with alleneenes^[3] and alleneynes^[4] giving polyunsaturated carbo- and heterocycles upon reaction with gold chlorides and other modified salts such as Ph₃PAuX in a totally atom-economic manner. (Phosphite)gold(I) monocations react with 1,6-alleneynes in an exo fashion to furnish vinyl-substituted benzocycles.^[5] Various transition metals, for example, Rh, Pd and Pt, catalyse allencyne cycloisomerization reactions, which generally involve the formation of metallacyclopentene intermediates.^[6] On the other hand, in gold chemistry, the cyclization reactions of enynes and allenynes or allenenes are postulated to proceed by the addition of a double bond to a gold-complexed alkyne. A complete experimental and computational study with allenynes, disclosed recently by Toste and coworkers, proposes the addition of the allene to a (phosphane)gold-complexed acetylide, ruling out the complexation of the metal atom with the allene.^[4a]

N-Allenylamides are an interesting group of substrates that are becoming useful in organic synthesis.^[7] These allenes have found use in some reactions with electrophiles and in certain cyclization reactions.^[8] We envisioned the possibility of promoting the cyclization reactions of *N*-(alk-ynylaryl)-*N*-allenylamides to furnish interesting heterocycles such as benzazepines. Some benzazepines have interest-

tack of the allene and trapping of the intermediate with NuH accounts for the formation of 4, but coordination to the allene and addition of NuH to give 3, which can decompose into other products and also form 4, is postulated as a better explanation for these results.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)

ing biological properties. Examples are the vainilloid receptor subtype 1 (VR1) antagonist, capsazepine^[9] or certain 1benzazepines designed as potent and selective antagonists of the arginine vasopressin (AVP) V_{1A} receptor.^[10] Herein we present a study of the cyclization reactions of *N*-(alk-ynylaryl)-*N*-allenylamides and other allenes by using gold catalysis.

Results and Discussion

Compound 1a^[11] was selected as a model compound and used in reactions performed under different conditions, as summarized in Table 1. The cycloisomerization reactions of allenvnes previously described in the literature were postulated to occur by the coordination of the gold atom to the triple bond followed by nucleophilic attack of the internal allene bond to give a cationic species that undergoes a 1,5-hydrogen shift. The latter step is only possible with non-terminal allenes. With our substrate, the use of a nucleophile to trap the intermediate species was mandatory. Indeed, the reaction of 1a with AuCl₃ in DCM produced extensive decomposition of the starting material and isolation of isomer 7a in 25% yield (Entry 1, Table 1). Therefore, we added methanol to the reaction mixture, and we observed the formation of 4aa and a new product 3aa as a result of the addition of methanol to the allene (Entry 2). The reaction was completed within minutes, and we next explored different conditions in order to optimize the formation of 4aa. The reaction temperature was critical for achieving high yields, and the best conditions for the synthesis of 4aa were those of Entry 4 (-78 °C); 4aa was obtained as only the trans diastereomer in 85% yield. For comparative reasons we performed the reaction with other metals as catalysts. Experiments with platinum salts led to the loss of the allene moiety and the formation of the ketone 5a with subsequent cyclization to give the indole 6a

 [[]a] Departamento de Química, Facultad de Farmacia, Universidad San Pablo-CEU,
 Urb. Montarríaciano 28668 Pacadilla del Monto Madrid. Spain

Urb. Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain Fax: +34-913510496 E-mail: ipercas@ceu.es

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.200900745.

FULL PAPER

OMe NH ΝН `OMe Τs Τ́s Τs Τ́s Τ́s Ťs Ťs 2 3 4 5 6 1 7 Product, yield^[a] [%] Entry Reaction conditions Catalyst^[b] 7 R Substrate Solvent Time Temp. [°C] 2 3 4 5 6 Η 1a AuCl₃ DCM 1 h 25 7a, 25 1 2 AuCl₃ DCM/MeOH (9:1) 15 min 10 3aa, 18 4aa, 55 Η **1**a 3 Н AuCl₃ DCM/MeOH (2:1) 15 min 10 3aa, 5 **4**aa 71 1a 4 Н 1a AuCl₃ DCM/MeOH (2:1) 1 h -78 4aa, 85 5 Η **1**a PtCl₂ DCM/MeOH (9:1) 24 h 10 **4aa**, 5 5a, 12 **6a**, 15 PtCl₄ 6 24 h 10 5a, 17 **6a**, 40 Η **1**a DCM/MeOH (9:1) 7 PhCH₃/MeOH (9:1) 2 h + 24 h 10-80 **2a**, 60 Η 1a InBr₃ 8 Η AuCl DCM/MeOH (2:1) 1.5 h 0 2a. 5 6a, 45 1a 9 Η 1a (PPh3)AuCl/AgSbF6 DCM/MeOH (9:1) 2 h10 2a, 35 10 Me 1b AuCl₃ DCM/MeOH (2:1) 15 min 10 4ba, 55 11 DCM/MeOH (2:1) 2c, 18 4ca, 17 C_4H_9 1c AuCl₃ 1 h 10 C₄H₉ 12 AuCl₃ DCM/MeOH (2:1) 1 h -782c, 18 4ca, 47 1c 13 DCM/MeOH (2:1) 6d, 22 Ph 1d AuCl₃ 4 h -78

Table 1. Reactions of 1a-d with different catalysts under different conditions.

[a] Yield of the isolated product. [b] 5 mol-% of catalyst.

(Entries 5 and 6). With PtCl₂, a small amount of 4aa was also isolated. Indium(III) bromide gave exclusively the product 2a (Entry 7). We also studied the reactions of gold(I) species, which led to the cleavage of the allene or the formation of the indole 6a in a moderate yield (Entries 8–9); alkynylamines are known to form indoles in the presence of gold and platinum catalysts, and 6a is presumably formed by the cyclization of 2a.^[12] The reaction with AuCl₃ was then applied to the substrates **1b-d** with different substituents at the alkyne. Compound 1b gave 4ba in 55% yield as the only reaction product (Entry 10), whereas 1c gave the corresponding 4ca in low yield with a small amount of 2c (Entry 11). For this reason we carried out the reaction at -78 °C and observed the yield of 4ca to rise to 47% (Entry 12). Finally, 1d did not cyclize and only gave 6d in low yield (Entry 13). The increasing steric demand of the substituents at the triple bond is possibly responsible for these results.

The formation of 4aa can be rationalized by two possible pathways according to proposals in the literature for similar reactions (Scheme 1). Although many gold-catalysed reactions can be explained by the complexation of the metal first with triple bonds (path a), in this case we have to consider coordination to the enriched allene (path b), which would also give a stable complex. If the gold atom prefers to coordinate to the alkyne first, the formation of intermediate **B** or **C** could be expected. As the formation of a sixmembered ring was not observed under any of the reaction conditions, we assume that the aromatic ring is responsible for the regiochemical outcome of the nucleophilic attack and the formation of C. This path does not explain the formation of compound 3aa. In addition, 7a is the only isolated product in the reaction (in low yield) performed in the absence of a nucleophile (Entry 1), which indicates that the metal atom coordinates to the allene. Thus, path b accounts for the synthesis of **3aa**, which then acts as an intermediate. Nucleophilic attack on allenes catalysed by different metals is well documented and drives the reaction as it is more favourable than attack on a gold-complexed triple bond. Compound **3aa** may then evolve in two possible ways, that is, with the loss of the enamide group to give **2a** or by nucleophilic attack on the alkyne once it has coordinated to the gold atom. This latter step gives intermediate **G** leading to **4aa**.

Scheme 1. Mechanism for the reaction of 1a.

To support this pathway we isolated **3aa** and submitted it to a new reaction with $AuCl_3$ under the conditions described in Entry 3 (Table 1) and observed a total conversion into **4aa**. This result shows that path b is probably responsible for the formation of **4aa**. The electronic nature of the *N*-allenylamide and the type of nucleophile could affect the result of the reaction, favouring the formation of **4** or the evolution of **3** into **2** and from this *N*-(2-ethynylphenyl)-4-methylbenzenesulfonamide the formation of **5** and **6**. In addition to this reaction, we submitted compounds **8** and **9** to our reaction conditions (Scheme 2). In the presence of DCM and an alcohol these compounds were converted into **10** and **11** in high yields.

Scheme 2. Reactions of compounds 8 and 9 with AuCl₃.

On the other hand, a curiosity we observed when performing the reaction of 1a (Scheme 3) with undistilled DCM was the formation of compound 4ab in 50% yield together with a small amount of 4aa. As commercial DCM contains EtOH, the equilibrium between 4aa and 4ab must be displaced towards the latter compound during the workup. Thus, 4aa would be converted into 4ab when methanol is eliminated and ethanol is still in the mixture. To check this point we stirred 4aa with ethanol, and after 18 h no changes were observed. On the other hand, 4aa was completely converted into 4ab after 20 min when stirred in ethanol in the presence of AuCl₃, which shows the positive effect of the metal on the transformation. As reported in the literature, the complex formed in situ with the alcohol [AuCl₃(ROH)] is possibly the acid catalyst responsible for this transformation.^[13]

Scheme 3. Reaction of 1a with AuCl₃ in undistilled DCM.

Our next aim was to study the scope of the cyclization reaction. Thus, we prepared allenyl ether **1e** and *N*-allenylamides **1f**–**i**, which were easily obtained by propargylation of *N*-protected 2-alkynylanilines followed by KO*t*Bu-mediated isomerization. The reaction of allenyl phenyl ether **1e** produced a rapid transformation to the corresponding phenol without the detection of any other products (Entry 1, Table 2). *N*-Allenylamides **1f**–**1h** bearing less withdrawing groups than tosyl at the nitrogen atom (acetyl or benzoyl) gave exclusively the products **2** and **3** (Entries 2–4). These results show the capacity of compounds 3 to lose the alkenyl group to form 2. Indeed, when compound 3fa was treated with AuCl₃ it gave 5f (73%). On the other hand, the sulfonamide 1i gave a mixture of diastereomers of 4ia in good yield together with 11% of indole 6i (Entry 5). The reaction of 1a in the presence of other nucleophiles led to the isolation of compounds 4ac and 4ad in good yields (Entries 6 and 7). In contrast to the reactions with oxygen nucleophiles, in which only the *trans* isomers were formed, the reaction with EtSH gave a 1:1 mixture of isomers. The reaction in the presence of pyrrolidine gave exclusively the indole 6a (Entry 8), and with TMSCN small amounts of 2a and 3af were obtained (Entry 9).

Table 2. Reactions of 1 with different NuH.

[a] 7:3 mixture of *trans* diastereoisomers. [b] 1:1 mixture of *cis* and *trans* isomers.

From the results shown herein it is clear that a highly electron-withdrawing group is necessary for the formation of benzazepines 4. All the data point to a straightforward conversion of the starting allenes into addition products 3, which partially decompose to the amides 2, which undergo cyclization to indoles 6 or are converted into ketones 5. This process is favoured with carboxylic amides and ethers. With sulfonamides, the corresponding compounds 3 undergo a cyclization reaction leading to 4. The best nucleophiles are alcohols, which give the benzazepines 4 as only the *trans* isomers.

FULL PAPER

Conclusions

A novel cyclization process catalysed by gold species has been shown for *N*-allenylamides. The reaction is possible with *N*-allenylsulfonamides, whereas with other *N*-allenylamides a competitive nucleophilic addition to the allene is preferred. The results suggest a reaction pathway that involves the coordination of the metal atom to the allene followed by nucleophilic attack and cyclization. A complete study of the scope and limitations of these reactions and their further application in natural alkaloid synthesis is underway in our laboratory.

Experimental Section

((<=AUTHOR: Please give a brief paragraph describing makes and models of instruments used for characterization and from where chemicals were purchased with any relevant purification details!))

Typical Procedure for the Cyclization of 1: The catalyst (5 mol-%) was added to a solution of the *N*-(alkynylaryl)-*N*-allenylamide (1.0 mmol) in DCM/NuH (2:1, 2 mL), and the mixture was stirred until the reaction was complete (TLC). The crude mixture was extracted with water and ethyl acetate, the organic layer was dried (MgSO₄), and the solvent was removed under reduced pressure. The crude residue was purified by flash chromatography on silica gel (hexane/EtOAc mixtures).

N-(2-Ethynylphenyl)-*N*-[(1*E*)-3-methoxyprop-1-enyl]-4-methylbenzenesulfonamide (3aa): Table 1, Entry 2: reaction temperature, time: 10 °C, 15 min. Yield: 61 mg (18%). Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ = 2.44 (s, 3 H, CH₃), 2.97 (s, 1 H, HC≡), 3.25 (s, 3 H, OCH₃), 3.86 (d, *J* = 7.1 Hz, 2 H, CH₂), 4.30–4.40 (m, 1 H, CH=), 6.95–6.98 (m, 1 H, NCH=), 7.17 (d, *J* = 13.7 Hz, 1 H, ArH), 7.28 (d, *J* = 7.7 Hz, 2 H, ArH), 7.31–7.37 (m, 2 H, ArH), 7.55–7.58 (m, 1 H, ArH), 7.62 (d, *J* = 8.2 Hz, 2 H, ArH) ppm. IR (film): \tilde{v} = 1650, 1600 cm⁻¹.

N-(2-Ethynylphenyl)-*N*-[(*1E*)-3-methoxyprop-1-enyl]acetamide (3fa): Table 2, Entry 2: reaction temperature, time: −78 °C, 10 min. Yield: 124 mg (54%). Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ = 1.86 (s, 3 H, CH₃CO), 3.19 (s, 1 H, HC≡), 3.22 (s, 3 H, CH₃O), 3.82– 3.93 (m, 2 H, CH₂), 4.36–4.45 (m, 1 H, CH=), 7.22 (dd, ¹*J* = 7.7, ²*J* = 1.1 Hz, 1 H, NCH=), 7.39 (td, ¹*J* = 7.7, ²*J* = 1.6 Hz, 1 H, ArH), 7.47 (td, ¹*J* = 7.7, ²*J* = 1.6 Hz, 1 H, ArH), 7.63 (dd, ¹*J* = 7.7, ²*J* = 1.6 Hz, 1 H, ArH), 7.65 (d, *J* = 14.3 Hz, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 22.7, 57.1, 71.1, 78.7, 82.4, 108.5, 122.3, 128.8, 129.3, 130.4, 130.7, 134.1, 141.2, 168.6 ppm. IR (film): \tilde{v} = 2100, 1680, 1660 cm⁻¹. C₁₄H₁₅NO₂ (229.27): calcd. C 73.34, H 6.59, N 6.11; found C 73.49, H 6.27, N 5.85.

N-[(*1E*)-3-Methoxyprop-1-enyl]-*N*-(2-prop-1-ynylphenyl)acetamide (3ga): Table 2, Entry 3: reaction temperature, time: −78 °C, 4 h. Yield: 37 mg (15%). Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ = 1.88 (s, 3 H, CH₃CO), 2.00 (s, 3 H, CH₃C=), 3.25 (s, 3 H, CH₃O), 3.85–3.96 (m, 2 H, CH₂), 4.38–4.48 (m, 1 H, CH=), 7.18 (dd, ¹*J* = 7.2, ²*J* = 2.2 Hz, 1 H, NCH=), 7.33–7.42 (m, 2 H, ArH), 7.54 (dd, ¹*J* = 6.6, ²*J* = 2.7 Hz, 1 H, ArH), 7.65 (d, *J* = 14.3 Hz, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 4.5, 22.8, 57.1, 71.3, 75.0, 91.4, 108.4, 124.2, 128.7, 129.1, 129.1, 130.9, 133.6, 140.5, 169.0 ppm. IR (film): \tilde{v} = 1680, 1650 cm⁻¹. C₁₅H₁₇NO₂ (243.30): calcd. C 74.05, H 7.04, N 5.76; found C 73.80, H 7.18, N 5.88.

N-(2-Ethynylphenyl)-N-[(1E)-3-methoxyprop-1-enyl]benzamide (3ha): Table 2, Entry 4: reaction temperature, time: -78 °C, 4 h.

Yield: 27 mg (10%). Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ = 3.27 (s, 1 H, HC=), 3.29 (s, 3 H, CH₃O), 3.95 (br. s, 2 H, CH₂), 4.62–4.72 (m, 1 H, CH=), 7.21–7.49 (m, 10 H, NCH= and ArH) ppm. IR (film): \tilde{v} = 2100, 1680, 1640 cm⁻¹.

N-[(1*E*)-3-Cyanoprop-1-enyl]-*N*-(2-ethynylphenyl)-4-methylbenzenesulfonamide (3af): Table 2, Entry 9: reaction temperature, time: -78 °C, 1 h. Yield: 47 mg (14%). Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ = 2.44 (s, 3 H, CH₃), 2.96 (s, 1 H, HC=), 3.04 (dd, ¹*J* = 6.8, ²*J* = 1.5 Hz, 2 H, CH₂), 4.09–4.18 (m, 1 H, CH=), 7.00–7.03 (m, 1 H, NCH=), 7.17–7.23 (m, 1 H, ArH), 7.29 (d, *J* = 7.8 Hz, 2 H, ArH), 7.33–7.40 (m, 2 H, ArH), 7.54–7.57 (m, 1 H, ArH), 7.60 (d, *J* = 8.3 Hz, 2 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 18.0, 21.6, 79.0, 82.3, 117.7, 123.8, 127.7, 128.2, 129.3, 129.7, 129.9, 130.8, 132.0, 134.5, 135.7, 137.2, 144.3 ppm. IR (film): \tilde{v} = 2250 cm⁻¹. C₁₉H₁₆N₂O₂S (336.41): calcd. C 67.84, H 4.79, N 8.33; found C 68.02, H 4.98, N 7.99.

2-Methoxy-3-(methoxymethyl)-1-tosyl-2,3-dihydro-1*H***-1-benzazepine (4aa):** Table 1, Entry 4: reaction temperature, time: -78 °C, 1 h. Yield: 317 mg (85%). Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ = 2.29 (br. s, 1 H, 3-H), 2.38 (s, 3 H, CH₃Ar), 3.36 (s, 3 H, CH₃OCH₂), 3.38–3.42 (m, 1 H, CH₂), 3.51–3.56 (m, 1 H, CH₂), 3.65 (s, 3 H, CH₃OCH), 5.61–5.62 (m, 2 H, 4-H and 5-H), 5.68 (d, *J* = 10.4 Hz, 1 H, 2-H), 6.93–6.96 (m, 1 H, ArH), 7.11 (d, *J* = 8.2 Hz, 2 H, ArH), 7.23 (d, *J* = 8.2 Hz, 2 H, ArH), 7.28–7.36 (m, 2 H, ArH), 7.55–7.58 (m, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 21.5, 43.5, 55.6, 59.2, 71.8, 98.7, 127.8, 128.0, 128.2, 128.6, 128.7, 129.9, 131.1, 133.5, 133.8, 136.0, 138.3, 143.0 ppm. IR (film): \tilde{v} = 1620, 1580 cm⁻¹. C₂₀H₂₃NO₄S (373.47): calcd. C 64.32, H 6.21, N 3.75; found C 64.52, H 6.07, N 3.93.

2-Methoxy-3-(methoxymethyl)-4-methyl-1-tosyl-2,3-dihydro-1*H***-1-benzazepine (4ba):** Table 1, Entry 10: reaction temperature, time: 10 °C, 15 min. Yield: 213 mg (55%). Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ = 2.36 (s, 3 H, CH₃C=), 2.41 (s, 3 H, CH₃Ar), 2.76 (dd, ¹*J* = 9.8, ²*J* = 6.1 Hz, 1 H, 3-H), 2.82 (s, 3 H, CH₃OCH₂), 2.93 (s, 3 H, CH₃OCH), 2.97 (dd, ¹*J* = 9.1, ²*J* = 1.8 Hz, 1 H, CH₂), 3.18–3.25 (m, 1 H, CH₂), 5.46 (s, 1 H, 5-H), 5.88 (d, *J* = 12.8 Hz, 1 H, 2-H), 6.85–6.94 (m, 2 H, ArH), 7.00 (d, *J* = 7.9 Hz, 1 H, ArH), 7.12–7.38 (m, 4 H, ArH), 7.70 (d, *J* = 7.9 Hz, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 13.1, 19.9, 21.5, 41.8, 58.4, 67.5, 70.2, 114.6, 126.3, 127.2, 128.7, 128.8, 129.9, 133.2, 134.6, 139.0, 140.9, 142.8, 144.7 ppm. IR (film): \tilde{v} = 1600 cm⁻¹. C₂₁H₂₅NO₄S (387.49): calcd. C 65.09, H 6.50, N 3.61; found C 64.83, H 6.78, N 3.47.

4-Butyl-2-methoxy-3-(methoxymethyl)-1-tosyl-2,3-dihydro-1*H***-1-benzazepine (4ca):** Table 1, Entry 12: reaction temperature, time: -78 °C, 1 h. Yield: 200 mg (47%). Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ = 0.95 (t, *J* = 7.3 Hz, 3 H, CH₃CH₂), 1.10–1.41 (m, 4 H, 2 CH₂), 1.94–2.20 (m, 2 H, CH₂C=), 2.49 (br. s, 1 H, 3-H), 2.39 (s, 3 H, CH₃Ar), 3.29 (s, 3 H, CH₃OCH₂), 3.50 (dd, ¹*J* = 9.3, ²*J* = 2.4 Hz, 1 H, CH₂O), 3.59 (dd, ¹*J* = 9.3, ²*J* = 2.0 Hz, 1 H, CH₂O), 3.63 (s, 3 H, CH₃OCH), 5.39 (br. s, 1 H, 5-H), 5.54 (d, *J* = 10.7 Hz, 1 H, 2-H), 6.94–6.97 (m, 1 H, ArH), 7.09 (d, *J* = 8.3 Hz, 2 H, ArH), 7.20 (d, *J* = 8.3 Hz, 2 H, ArH), 7.26–7.33 (m, 2 H, ArH), 7.53–7.57 (m, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 14.2, 21.5, 22.8, 29.5, 31.8, 45.9, 55.4, 58.7, 69.9, 97.7, 127.2, 127.3, 128.4, 128.5, 128.8, 129.8, 132.9, 133.4, 136.5, 138.7, 142.6, 142.9 ppm. IR (film): \tilde{v} = 1600 cm⁻¹. C₂₄H₃₁NO₄S (429.57): calcd. C 67.10, H 7.27, N 3.26; found C 66.84, H 7.42, N 3.46.

2-Ethoxy-3-(methoxymethyl)-1-tosyl-2,3-dihydro-1*H***-1-benzazepine** (4ab): Reaction temperature: 10 °C, 20 min. Solvent: undistilled DCM/MeOH. Yield: 194 mg (50%). Yellow oil. ¹H NMR

(300 MHz, CDCl₃): δ = 1.29 (t, *J* = 6.8 Hz, 3 H, CH₃CH₂O), 2.28 (br. s, 1 H, 3-H), 2.37 (s, 3 H, CH₃Ar), 3.35 (s, 3 H, CH₃O), 3.40 (dd, ¹*J* = 8.8, ²*J* = 2.7 Hz, 1 H, CH₂OCH₃), 3.53 (dd, ¹*J* = 8.8, ²*J* = 5.2 Hz, 1 H, CH₂OCH₃), 3.74–3.84 (m, 1 H, CH₃CH₂O), 4.06–4.16 (m, 1 H, CH₃CH₂O), 5.56–5.65 (m, 2 H, 4-H and 5-H), 5.78 (d, *J* = 10.4 Hz, 1 H, 2-H), 6.91–6.95 (m, 1 H, ArH), 7.09 (d, *J* = 8.2 Hz, 2 H, ArH), 7.22 (d, *J* = 8.2 Hz, 2 H, ArH), 7.27–7.34 (m, 2 H, ArH), 7.52–7.56 (m, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 14.9, 21.5, 43.5, 59.1, 63.1, 71.8, 97.2, 127.8, 128.0, 128.2, 128.5, 128.6, 129.8, 131.0, 133.4, 133.8, 136.0, 138.3, 142.9 ppm. IR (film): $\tilde{\nu}$ = 1590 cm⁻¹. C₂₁H₂₅NO₄S (387.49): calcd. C 65.09, H 6.50, N 3.61; found C 65.31, H 6.26, N 3.86.

(1S)-1-({[2-Methoxy-3-(methoxymethyl)-2,3-dihydro-1H-1benzazepinyl]sulfonyl}methyl)-7,7-dimethylbicyclo[2.2.1]heptan-2one (4ia): Table 2, Entry 5: reaction temperature, time: -78 °C, 4 h. Solvent: DCM (with ethanol traces)/MeOH. Yield: 205 mg (46%). Yellow oil. ¹H NMR (300 MHz, CDCl₃) (mixture of isomers, 7:3): $\delta = 0.72$ (s, 0.9 H, CH₃camphor), 0.87 (s, 2.1 H, CH₃camphor), 0.96 (s, 0.9 H, CH₃camphor), 1.16 (s, 2.1 H, CH₃camphor), 1.23 (t, J = 7.1 Hz 3 H, CH_3CH_2O), 1.31–1.45 (m, 1 H, CH_2 camphor), 1.81-2.05 (m, 2 H, CH₂camphor), 2.28-2.50 (m, 5 H, 3-H and CH₂camphor), 2.66 (d, J = 14.8 Hz, 0.3 H, SCH₂camphor), 2.77 (d, J = 14.8 Hz, 0.7 H, SCH₂camphor), 3.24 (d, J = 14.8 Hz, 0.7 H, SCH₂camphor), 3.35 (d, J = 14.8 Hz, 0.3 H, SCH₂camphor), 3.38 (s, 3 H, CH₃O), 3.45–3.52 (m, 1 H, CH₂OCH₃), 3.56–3.60 (m, 1 H, CH₂OCH₃), 3.63–3.74 (m, 1 H, CH₃CH₂O), 3.95–4.05 (m, 1 H, CH₃CH₂O), 5.63–5.66 (m, 1 H, 5-H), 6.11–6.20 (m, 1 H, 4-H), 6.67 (m, 1 H, 2-H), 6.72 (dd, ${}^{1}J = 10.4$, ${}^{2}J = 2.2$ Hz, 1 H, ArH), 7.21–7.41 (m, 2 H, Ar), 7.47–7.49 (m, 1 H, Ar) ppm. ¹³C NMR (75 MHz, CDCl₃) (mixture of isomers, 7:3): δ = 14.9, 19.6, 19.7, 20.0, 20.3, 25.0, 25.2, 26.7, 26.8, 42.4, 42.5, 42.7, 42.9, 44.3, 47.4, 47.6, 49.1, 49.2, 58.5, 58.6, 59.1, 59.2, 63.2, 71.9, 72.0, 96.9, 97.0, 128.0, 128.1, 128.6, 128.7, 128.8, 128.8, 130.6, 131.1, 132.6, 133.1, 133.2, 133.3, 134.3, 134.5, 137.4, 137.5, 191.9, 192.1 ppm. IR (film): $\tilde{v} = 1740, 1600 \text{ cm}^{-1}.$

2-Ethoxy-3-(ethoxymethyl)-1-tosyl-2,3-dihydro-1*H***-1-benzazepine** (4ac): Table 2, Entry 6: reaction temperature, time: –78 °C, 1 h. Yield: 325 mg (81%). Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ = 1.22 (t, *J* = 6.8 Hz, 3 H, CH₃CH₂O), 1.28 (t, *J* = 6.8 Hz, 3 H, CH₃CH₂O), 2.28 (br. s, 1 H, 3-H), 2.36 (s, 3 H, CH₃Ar), 3.41–3.59 (m, 4 H, 2 CH₃CH₂O), 3.74–3.84 (m, 1 H, CH₂CH), 4.05–4.15 (m, 1 H, CH₂CH), 5.56–5.64 (m, 2 H, 4-H and 5-H), 5.80 (d, *J* = 10.3 Hz, 1 H, 2-H), 6.91–6.94 (m, 1 H, ArH), 7.09 (d, *J* = 8.3 Hz, 2 H, ArH), 7.23 (d, *J* = 8.3 Hz, 2 H, ArH), 7.27–7.31 (m, 2 H, ArH), 7.51–7.54 (m, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 14.9, 15.0, 21.4, 43.5, 63.0, 66.5, 69.4, 97.3, 127.6, 127.9, 128.1, 128.5, 128.6, 129.5, 131.3, 133.4, 133.9, 136.2, 138.2, 142.9 ppm. IR (film): \tilde{v} = 1600 cm⁻¹. C₂₂H₂₇NO₄S (401.52): calcd. C 65.81, H 6.78, N 3.49; found C 66.02, H 6.55, N 3.60.

2-(Ethylsulfanyl)-3-((ethylsulfanyl)methyl)-1-tosyl-2,3-dihydro-1*H***-1-benzazepine (4ad):** Table 2, Entry 7: reaction temperature, time: -78 °C, 3 h. Yield: 333 mg (77%). Yellow oil. ¹H NMR (300 MHz, CDCl₃) (mixture of isomers, 1:1): δ = 1.23–1.30 (m, 6 H, CH₃CH₂S), 1.55–1.67 (m, 1.5 H, CH₂CH), 1.75–1.89 (m, 0.5 H, CH₂CH), 2.29–2.76 (m, 4.5 H, CH₃CH₂S, CH), 2.41 (s, 3 H, CH₃Ar), 2.91–2.96 (m, 0.5 H, CH₃CH₂S), 5.48 (d, *J* = 8.8 Hz, 1 H, 5-H), 5.73 (dd, ¹*J* = 8.8, ²*J* = 5.4 Hz, 1 H, 4-H), 6.88 (d, *J* = 7.8 Hz, 1 H, 2-H), 7.22–7.36 (m, 4 H, ArH), 7.45–7.51 (m, 1 H, ArH), 7.62–7.72 (m, 3 H, ArH) ppm. ¹³C NMR (75 MHz, [D₆]-DMSO) (mixture of isomers, 1:1): δ = 14.6, 14.6, 14.7, 14.8, 21.1, 21.2, 24.5, 24.8, 25.0, 26.3, 27.9, 28.0, 34.4, 34.9, 65.3, 65.4, 125.9,

127.4, 127.9, 129.1, 129.4, 129.7, 130.0, 131.0, 133.5, 134.1, 134.2, 136.3, 136.7, 137.2, 143.8, 143.9 ppm. IR (film): $\tilde{v} = 1600 \text{ cm}^{-1}$.

2-Phenyl-1-tosyl-1*H***-indole (6d):** Table 1, Entry 13: reaction temperature, time: -78 °C, 4 h. Yield: 76 mg (22%). Brown solid (m.p. 143–145 °C). ¹H NMR (300 MHz, CDCl₃): δ = 2.30 (s, 3 H, CH₃Ar), 6.56 (s, 1 H, ArH), 7.05 (d, *J* = 8.3 Hz, 2 H, ArH), 7.25–7.30 (m, 4 H, ArH), 7.37 (td, ¹*J* = 7.3, ²*J* = 1.5 Hz, 1 H, ArH), 7.41–7.47 (m, 3 H, ArH), 7.51–7.55 (m, 2 H, ArH), 8.33 (d, *J* = 8.3 Hz, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 21.5, 113.6, 116.6, 120.6, 124.3, 124.7, 126.7, 127.5, 128.6, 129.2, 130.3, 130.5, 132.4, 134.5, 138.2, 142.1, 144.5 ppm. IR (KBr): \tilde{v} = 1590 cm⁻¹. C₂₁H₁₇NO₂S (347.43): calcd. C 72.60, H 4.93, N 4.03; found C 72.83, H 4.68, N 4.24.

(1S)-1-[(1H-Indol-1-ylsulfonyl)methyl]-7,7-dimethylbicyclo[2.2.1]heptan-2-one (6i): Table 2, Entry 5: reaction temperature, time: -78 °C, 4 h. Solvent: DCM (with ethanol traces)/MeOH. Yield: 36 mg (11%). Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ = 0.86 (s, 3 H, CH₃camphor), 1.18 (s, 3 H, CH₃camphor), 1.45-1.54 (m, 1 H, CH₂camphor), 1.76–1.85 (m, 1 H, CH₂camphor), 1.97 (d, J =18.9 Hz, 1 H, CH₂camphor), 2.06–2.16 (m, 2 H, CH₂camphor), 2.39 (dt, ${}^{1}J = 18.3$, ${}^{2}J = 3.0$ Hz, 1 H, CH₂camphor), 2.51–2.61 (m, 1 H, CHcamphor), 3.08 (d, *J* = 14.6 Hz, 1 H, SCH₂camphor), 3.63 (d, J = 14.6 Hz, 1 H, SCH₂camphor), 6.72 (d, J = 3.0 Hz, 1 H, ArH), 7.32 (td, ${}^{1}J$ = 7.3, ${}^{2}J$ = 1.2 Hz, 1 H, ArH), 7.40 (td, ${}^{1}J$ = 7.9, ${}^{2}J$ = 1.2 Hz, 1 H, ArH), 7.48 (d, J = 3.7 Hz, 1 H, ArH), 7.65 (d, J = 7.3 Hz, 1 H, ArH), 8.01 (dd, ${}^{1}J = 7.9$, ${}^{2}J = 1.2$ Hz, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 19.7, 19.9, 25.2, 26.9, 42.4, 42.8, 48.0, 50.5, 58.5, 108.4, 113.1, 121.5, 123.3, 124.8, 126.2, 130.6, 134.8, 193.0 ppm. IR (film): $\tilde{v} = 1740 \text{ cm}^{-1}$. $C_{18}H_{21}NO_3S$ (331.43): calcd. C 65.23, H 6.39, N 4.23; found C 65.39, H 6.16, N 3.94.

N-[(1*E*)-3-Ethoxyprop-1-enyl]-4-methyl-*N*-phenylbenzenesulfonamide (10): Reaction temperature, time: −78 °C, 1 h. Yield: 198 mg (60%). Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ = 1.16 (t, *J* = 6.8 Hz, 3 H, *CH*₃CH₂), 2.43 (s, 3 H, CH₃Ar), 3.41 (q, *J* = 6.8 Hz, 2 H, CH₃*CH*₂), 3.89 (dd, ¹*J* = 1.0, ²*J* = 6.8 Hz, 2 H, CH₂), 4.43– 4.53 (m, 1 H, CH=), 6.97–7.00 (m, 2 H, NCH= and ArH), 7.22– 7.28 (m, 3 H, ArH), 7.34–7.36 (m, 2 H, ArH), 7.55 (d, *J* = 8.3 Hz, 2 H, ArH), 7.57 (d, *J* = 7.8 Hz, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 15.1, 21.6, 65.3, 69.3, 107.0, 127.5, 129.1, 129.5, 129.6, 130.3, 132.3, 135.7, 136.1, 144.0 ppm. IR (film): \tilde{v} = 1600 cm⁻¹. C₁₈H₂₁NO₃S (331.43): calcd. C 65.23, H 6.39, N 4.23; found C 64.89, H 6.07, N 4.45.

N-(3-Methoxyprop-1-enyl)-4-methyl-*N*-(2-vinylphenyl)benzenesulfonamide (11): Reaction temperature, time: −78 °C, 2 h. Yield: 223 mg (65%). Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ = 2.43 (s, 3 H, CH₃), 3.23 (s, 3 H, CH₃O), 3.82–3.85 (m, 2 H, CH₂), 4.26– 4.35 (m, 1 H, CH₂CH=), 5.21 (d, *J* = 11.2 Hz, 1 H, CH₂=CH), 5.71 (d, *J* = 17.5 Hz, 1 H, CH₂=CH), 6.66–6.75 (m, 2 H, CH₂=CH) and NCH=), 7.16–7.22 (m, 2 H, ArH), 7.28 (d, *J* = 8.3 Hz, 2 H, ArH), 7.36 (t, *J* = 7.3 Hz, 1 H, ArH), 7.60 (d, *J* = 7.8 Hz, 2 H, ArH), 7.69 (d, *J* = 7.8 Hz, 1 H, ArH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 21.5, 57.3, 70.9, 106.7, 116.2, 126.2, 127.5, 128.5, 129.5, 129.6, 130.0, 131.5, 132.1, 133.4, 135.9, 137.9, 144.1 ppm. IR (film): \tilde{v} = 3050, 2920, 2820, 1650, 1600 cm⁻¹. C₁₉H₂₁NO₃S (343.44): calcd. C 66.45, H 6.16, N 4.08; found C 66.63, H 5.97, N 4.29.

Supporting Information (see footnote on the first page of this article): Additional experimental procedures and characterization data for 8, 1b, 1g, 1h, 1i, 1c, 1d and 9 and NMR spectra for all new compounds.

Acknowledgments

Funding of this project by the Spanish Ministerio de Educación y Ciencia (MEC) (Project No. CTQ2006-00601/BQU) is acknowledged. A. G. G. thanks the Ministerio de Educación y Ciencia (MEC) and the Fundación San Pablo-CEU for predoctoral fellowships.

- For recent reviews of gold-catalysed reactions, see: a) Z. Li, C. Brouwer, C. He, Chem. Rev. 2008, 108, 3239–3265; b) A. Arcadi, Chem. Rev. 2008, 108, 3266–3325; c) E. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326–3350; d) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351– 3378; e) H. C. Shen, Tetrahedron 2008, 64, 3885–3903; f) H. C. Shen, Tetrahedron 2008, 64, 7847–7870; g) R. Skouta, C. J. Li, Tetrahedron 2008, 64, 4917–4938; h) R. A. Widenhoefer, Chem. Eur. J. 2008, 14, 5382–5391; i) E. Jiménez-Núñez, A. M. Echavarren, Chem. Commun. 2007, 333–346; j) D. J. Gorin, F. D. Toste, Nature 2007, 446, 395–403; k) A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410–3449; l) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180–3211; m) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. 2006, 45, 7896–7936.
- [2] See: a) R. LaLonde, B. D. Sherry, E. J. Kang, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 2452–2453; b) A. S. K. Hashmi, M. C. Blanco, D. Fischer, J. W. Bats, Eur. J. Org. Chem. 2006, 1387–1389; c) N. Morita, N. Krause, Angew. Chem. Int. Ed. 2006, 45, 1897–1899.
- [3] a) M. A. Tarselli, A. R. Chianese, S. J. Lee, M. R. Gagné, Angew. Chem. Int. Ed. 2007, 46, 6670–6673; b) G. Lemière, V. Gandon, N. Agenet, J.-P. Goddard, A. de Kozak, C. Aubert, L. Fensterbank, M. Malacria, Angew. Chem. Int. Ed. 2006, 45,

7596-7599; c) J. H. Lee, F. D. Toste, Angew. Chem. Int. Ed. 2007, 46, 912-914.

- [4] a) P. H. Cheong, P. Morganelli, M. R. Luzung, K. N. Houk, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 4517–4526; b) R. Zriba, V. Gandon, C. Aubert, L. Fensterbank, M. Malacria, Chem. Eur. J. 2008, 14, 1482–1491; c) C. Y. Yang, G. Y. Lin, H. Y. Liao, S. Datta, R. S. Liu, J. Org. Chem. 2008, 73, 4907– 4914.
- [5] G. Y. Lin, C. Y. Yang, R. S. Liu, J. Org. Chem. 2007, 72, 6753– 6757.
- [6] For a review see: V. Michelet, P. Y. Toullec, J. P. Genêt, Angew. Chem. Int. Ed. 2008, 47, 4268–4315; for a computational study with Pt, see: E. Soriano, J. Marco-Contelles, Chem. Eur. J. 2005, 11, 521–533.
- [7] L.-L. Wei, H. Xiong, R. P. Hsung, Acc. Chem. Res. 2003, 36, 773–782.
- [8] See: a) K. Hiroya, S. Itoh, T. Sakamoto, J. Org. Chem. 2004,
 69, 1126–1136; b) H. Xiong, J. Huang, S. K. Ghosh, R. P. Hsung, J. Am. Chem. Soc. 2003, 125, 12694–12695.
- [9] Y.-G. Suh, Y.-S. Lee, K.-H. Min, O.-H. Park, H.-S. Seung, H.-D. Kim, H.-G. Park, J.-Y. Choi, J. Lee, S.-W. Kang, U. Oh, J. Koo, Y.-H. Joo, S.-Y. Kim, J. K. Kimd, Y.-H. Park, *Bioorg. Med. Chem. Lett.* 2003, 13, 4389–4393.
- [10] Y. Shimada, N. Taniguchi, A. Matsuhisa, H. Akane, N. Kawano, T. Suzuki, T. Tobe, A. Kakefuda, T. Yatsu, A. Tahara, Y. Tomura, T. Kusayama, K. Wada, J. Tsukada, M. Orita, T. Tsunodad, A. Tanakae, *Bioorg. Med. Chem.* 2006, 14, 1827– 1837.
- [11] A. González-Gómez, L. Añorbe, A. Poblador, G. Domínguez, J. Pérez-Castells, *Eur. J. Org. Chem.* 2008, 1370–1377.
- [12] M. Alfonsi, A. Arcadi, M. Aschi, G. Bianchi, F. Marinelli, J. Org. Chem. 2005, 70, 2265–2273.
- [13] W. Robb, Inorg. Chem. 1967, 6, 382-386.

Received: July 6, 2009 Published Online: August 28, 2009